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Abstract. We describe connections between concepts arising in Poisson geometry and the theory
of Fukaya categories. The key concept is that of a symplectic groupoid, which is an integration
of a Poisson manifold. The Fukaya category of a symplectic groupoid is monoidal, and it acts on
the Fukaya categories of the symplectic leaves of the Poisson structure. Conversely, we consider a
wide range of known monoidal structures on Fukaya categories and observe that they all arise from
symplectic groupoids. We also use the picture developed to resolve a conundrum in Floer theory:
why are some Lagrangian Floer cohomology rings commutative?

1. Introduction

The concept of a Poisson manifold, namely a manifold equipped with a Poisson bracket {·, ·} on
its space of smooth functions, is a natural generalization of the concept of a symplectic manifold.
Symplectic forms on a given manifold M correspond bijectively to the Poisson brackets that are
nondegenerate in the sense that every vector X ∈ TpM is generated by a derivation of the form
g 7→ {f, g} for some function f . Whereas the local structure theory of symplectic manifolds is
essentially trivial due to the Darboux theorem, the local structure theory of Poisson manifolds is
extremely complicated; for instance, it contains the theory of arbitrary Lie algebras.

As natural as the generalization from symplectic to Poisson structures is from the point of
view of differential geometric structures on manifolds, from the point of view of Floer theory, it
can be argued that the generalization is completely unnatural. There is a reason that we have a
good theory of pseudo-holomorphic curves in symplectic manifolds [37]: while one may reasonably
develop the local theory of pseudo-holomorphic curves in any almost complex manifold, in order
to have compact moduli spaces, one needs to control the energy of the curves. Gromov’s insight
was that the natural geometric way to get such control is to assume that the almost complex
structure is tamed by a symplectic form. It is clear from the argument that the nondegeneracy of
the symplectic form is really essential, and any attempt to weaken this condition (such as in some
versions of symplectic field theory) requires great care.

Nevertheless, by broadening the perspective we can see that there are other tracks to follow. It
turns out that Poisson geometers do not ignore symplectic structures as trivial. In fact, a modern
perspective introduced by Weinstein is that a powerful way to study a Poisson manifold is to
associate to it a symplectic manifold of twice the dimension, a symplectic realization. The nicest
symplectic realizations are the symplectic integrations, and such an object by definition carries the
structure of a symplectic groupoid.

Given a symplectic groupoid (G,ω), we can consider the Fukaya A∞-category F(G) of the under-
lying symplectic manifold. The additional groupoid structure gives us additional higher-categorical
structure on F(G), namely, it makes the Fukaya A∞-category F(G) monoidal, and equips it with
a duality functor. These functors are represented by Lagrangian correspondences that encode the
groupoid structure.

This idea is not new: M. Gualtieri has informed the author that he has presented this idea
as early as 2009 [38] (see also section 4.8), and related ideas appear in the 2014 ICM article by
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C. Teleman [72] (see section 4.4). It is also quite possible that the same idea has occurred to others.
This note has several aims:

(1) to explicate how the theory of functors between Fukaya categories from Lagrangian corre-
spondences works in the context of symplectic groupoids, leading essentially to the notion
of a monoidal category with duality,

(2) to survey how this idea neatly ties together a range of known monoidal and duality structures
on Fukaya categories, as well as monoidal module actions on Fukaya categories,

(3) in what is perhaps the most original contribution of the note, to show that the theory
of symplectic groupoids allows us to resolve a conundrum in Floer theory, namely, the
question of why some Lagrangian Floer cohomology rings are commutative while others are
not. Our answer is that commutativity is explained by the presence of a symplectic groupoid
structure, together with standard arguments from the theory of monoidal categories.

1.1. Outline. The basic conceptual move is to change focus from Poisson manifolds to so-called
symplectic groupoids, introduced by Weinstein. A symplectic groupoid is a differential-geometric
object that has both an underlying symplectic manifold (G,ω) as well as an associated Poisson
manifold (M,π); note that these two structures live on different underlying manifolds. Roughly
speaking, the relationship between (G,ω) and (M,π) is parallel to the relationship between a Lie
group and its Lie algebra. Also of note is that not every Poisson manifold arises this way; by
definition (M,π) is integrable if it does.

The groupoid structure (G,ω) is encoded by structure maps between G and M . In accordance
with Weinstein’s creed “Everything is a Lagrangian,” these structure maps are also encoded by
Lagrangian correspondences between various copies of G and G, which is G with the sign of the
symplectic form reversed. By the Wehrheim-Woodward theory of quilts, these correspondences
induce functors on the Fukaya A∞-category F(G). This immediately leads to the following guiding
principle.

Principle 1.1.1. Let (G,ω) be a symplectic manifold, and assume that there is a good theory of
Fukaya categories and functors from Lagrangian correspondences for G. Then a symplectic groupoid
structure on (G,ω) induces

• a monoidal product ⊗ : F(G)× F(G)→ F(G),
• a distinguished object O ∈ ObF(G), which is a unit object for ⊗, and
• an equivalence functor D : F(G)→ F(G), to be thought of as a kind of duality.

Our definition of what it means to have a “good theory” of Lagrangian correspondences is made
precise in Section 3.4.

If this were the whole story, we might be led to believe that Poisson geometry itself is a dis-
traction, and the real story is about symplectic groupoids (which, among other properties, happen
to determine Poisson structures). But there is more structure present. The underlying Poisson
manifold (M,π) carries a singular integrable distribution π#(T ∗M) ⊆ TM . The leaves of the cor-
responding foliation are symplectic manifolds. These leaves are precisely the isomorphism classes
of objects in the groupoid (thought of as a category). Hence if F ⊆ M is a leaf G acts on F . In
line with the creed, this is represented by a Lagrangian correspondence from G×F to F . Thus we
find a principle that relates

Principle 1.1.2. Let (G,ω) be a symplectic groupoid integrating (M,π), and let F ⊆ M be a
symplectic leaf. Assuming a good theory of Lagrangian correspondences for G and F , we find that

• There is a functor ρ : F(G) × F(F ) → F(F ) that makes F(F ) into a monoidal module
A∞-category for the monoidal A∞-category F(G).

It is possible to go further, and study how the Morita theory of symplectic groupoids relates the
monoidal Morita theory of monoidal categories, but we will limit ourselves to exploring the two
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principles above for the purposes of this paper. Another connection between Poisson geometry and
Floer theory arises from the possibility to promote coisotropic submanifolds of (M,π) to Lagrangian
subgroupoids of (G,ω), see Section 4.8.

While we do not claim such constructions are possible in anything approaching the full generality
of all symplectic groupoids (in particular, we have not spelled out any geometric hypothesis on
(G,ω) that makes it possible to define the Fukaya category and have a good theory of functors
from Lagrangian correspondences), we will investigate it in several cases to show that it reproduces
known or at least expect monoidal structures in the theory of Fukaya categories, thereby unifying
them as instances of this guiding principle.

Remark 1.1.3. We can attempt to couch our perspective in the language of categorification. To
a mathematical object, one may attempt to attach a “category number” that measures “how
categorified” the object is. The following represents the author’s opinion. Manifolds have category
number zero, because the intersection of two cycles is a number. Symplectic manifolds have category
number one, because the intersection of two Lagrangian submanifolds is a graded vector space
whose Euler characteristic recovers the intersection number of the corresponding cycles. Symplectic
groupoids have category number two, because there is an additional monoidal structure.

The other direction we shall explore is that, in the presence of a monoidal structure, standard
arguments from the theory of monoidal categories can be brought to bear on the calculation of Floer
cohomology rings, in particular, we find that this framework gives a geometric a priori reason why
several Floer cohomology rings are graded commutative, see Section 5.

Lastly, a warning and an apology: at many points in this note, we will indicate how something
“should” work, without giving complete details of the construction, or even necessarily a precise
statement. These statements should be understood to be of a speculative or conjectural nature. It
is my belief that all such statements in this note are correct in the sense that they can be set up
and proved in all reasonable cases by an elaboration of known constructions in Floer theory. While
I can understand that some may object to such an approach, this note is based on ideas that are
rather simple once you see them, and my attitude is that the essential simplicity of the ideas should
not be obscured by a premature effort to construct everything in complete detail.

Another possible justification for this formal approach is that, though this author envisions that
all of the constructions described here can be made in terms of pseudo-holomorphic curve theories,
the same ideas should apply, at least in outline, to any other “version of the Fukaya category:” D-
modules or deformation quantization modules, or Nadler’s approach in terms of Lagrangian skeleta
and categorical Morse homology, or Tamarkin’s approach in terms of microlocal sheaves. The ideas
should also apply to any version of the Fukaya category yet to be conceived. Fundamentally, all that
is required is that one can associate categories to symplectic manifolds, and functors to Lagrangian
correspondences.

In this revised version, we have included an Appendix to make our formal arguments more precise.
The Appendix recalls precise definitions of monoidal A∞- and ∞-categories (in several versions),
as well the approach to (∞, 2)-categories via Segal conditions. As is well-known, 2-categories and
monoidal categories live at essentially the same level, so it is not surprising that they may be given
parallel treatment. This also makes it possible for us to assign a precise meaning to the phrase
“good solution to the composition problem” at the (∞, 2)-categorical level. The length of the
Appendix is symptomatic of many expositions of higher category theory. These notions are applied
to symplectic groupoids in Sections 3.4 and 3.5.

1.2. Relation to other work. I am not the first person to consider the idea that the Fukaya
category of a symplectic groupoid should be monoidal, although it seems this idea is not widely
appreciated. Marco Gualtieri informs me that he has advocated for this idea in talks as early as
2009. The thesis of Aleksandar Subotić [69] uses the groupoid structure of a torus fibration in
exactly this way. The work of Constantin Teleman on G-equivariant Fukaya categories [72] involves
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essentially the action of the symplectic groupoid T ∗G on a Hamiltonian G-manifold (see the “proof”
of Conjecture 2.9, op. cit.). This action was exploited to great effect by Jonny Evans and Yankı
Lekili in their generation results for Hamiltonian G-manifolds [26]. There is also a MathOverflow
thread1 where related ideas are discussed.

In the recent work of D. Ben-Zvi and S. Gunningham [11], a certain symplectic groupoid (the
group scheme J of regular centralizers in a complex reductive group) appears in connection with the
symmetries of categorical representations and Ngô’s work on the fundamental lemma [62]. While
Ben-Zvi and Gunningham use D-modules as their version of A-branes, it is natural to conjecture
that their picture has an interpretation in any version of the Fukaya category; see [11, Remark 2.7].

Further, I think it likely that the basic idea has occurred to other people. If you are one
of those people, perhaps the point of this note is that the structure one obtains on the Fukaya
category is already interesting even in cases where the underlying Poisson structure is in some
sense uninteresting (most of the examples we consider have constant rank).

1.3. Acknowledgments. I would like to thank Rui Loja Fernandes for introducing me to Poisson
geometry and symplectic groupoids. Paul Seidel provided crucial suggestions, and David Jordan
provided answers to my very basic questions regarding monoidal categories. I would also like to
thank Marco Gualtieri for sharing his perspective, as well as David Ben-Zvi and Sam Gunningham
for sharing their work with me.

This note is based on a talk given on September 24, 2017 at the AMS Sectional Meeting in
Orlando, Florida, as well as a talk given on December 1, 2017 at the workshop “Categorification,
Representation Theory and Symplectic Geometry” at the Hausdorff Research Institute for Mathe-
matics in Bonn, Germany. I thank Basak Gurel and Viktor Ginzburg, the organizers of the special
session in Orlando, and Anne-Laure Thiel and Daniel Tubbenhauer, the organizers of the workshop
in Bonn, for the opportunity to speak.

Part of this work was completed while the author was a member of the Institute for Advanced
Study during the 2016–17 special year on Homological Mirror Symmetry. The author was partially
supported by NSF grant DMS-1522670.

In preparing this revised version, I am grateful to Nate Bottman for conversations that spurred
me to understand precisely how the notions of monoid objects in higher category theory could be
applied to the problem of monoidal Fukaya categories. I also benefited from conversations with
Ezra Getzler about simplicial objects and derived algebraic geometry. I thank the referee for many
thoughtful comments and suggestions that improved the paper considerably.

1.4. Terminology. Unless otherwise specified, when we refer to the “Fukaya category” we mean
an A∞-category, and related notions such as “modules” or “functors” are the A∞ versions. The
phrase “cohomology-level Fukaya category” refers to the ordinary category obtained by taking the
degree-zero cohomology of all morphism complexes; this is also known as the homotopy category
of the Fukaya category or the Donaldson category. Other homotopy-coherent categorical notions,
such as ∞-categories, are explicitly marked. See the Appendix for more background information.

2. Symplectic groupoids and integrations

2.1. Definitions. First we begin with the basic category-theoretic notions.

Definition 2.1.1. A groupoid is a small category in which all morphisms are invertible.

A groupoid may be presented as follows: Given are two sets M and G. M is the set of objects,
and G is the set of morphisms, that is, the disjoint union of all the morphism spaces between all
pairs of objects. Also given is a map s : G → M that takes a morphism to its source object, a

1https://mathoverflow.net/questions/19041/a-poisson-geometry-version-of-the-fukaya-category
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map t : G → M that takes a morphism to its target object, a map e : M → G that takes an
object to its identity morphism, a map i : G→ G that takes a morphism to its inverse, and a map
m : G×s,tG→ G that takes a pair of composable morphisms to their composition. The statement
that these data form a category in which all morphisms are invertible can then be formulated as a
list of axioms that s, t, e, i,m must satisfy.

The corresponding “Lie” notion just involves replacing sets and functions with smooth manifolds
and smooth maps.

Definition 2.1.2. A Lie groupoid is presented as (G,M, s, t, e, i,m) where G and M are endowed
with the structure of smooth manifolds, and all structural maps are smooth maps.

Now comes a crucial concept introduced by Weinstein [80].

Definition 2.1.3. Let (G,M, s, t, e, i,m) be a Lie groupoid. A multiplicative symplectic structure
on G is a symplectic form ω ∈ Ω2(G) such that

(1) m∗ω = π∗1ω + π∗2ω

holds as an identity in Ω2(G ×s,t G). A symplectic groupoid consists of a Lie groupoid with a
multiplicative symplectic structure.

For the most part we shall notate a symplectic groupoid as (G,ω), suppressing the rest of the
groupoid structure. This actually does have the potential to cause confusion, because there are
pairs (G,ω) where ω is multiplicative for more than one groupoid structure on G. We hope the
reader will be able to understand what is intended from context.

2.2. Integrability of Poisson manifolds. We now recall the connection to Poisson geometry.
This material is well-known, but we include it for context.

Associated to a Lie groupoid (G,M, s, t, e, i,m), there is associated a corresponding Lie algebroid,
defined by linearization of the groupoid structure along the image of the identity section e : M → G.
This is analogous to the construction of the Lie algebra associated to a Lie group, which is precisely
the case where M is a single point. The algebroid consists of (M,E, a, [·, ·]), where M is as before,
E is a vector bundle on M , a : E → TM is a map of vector bundles over M , and [·, ·] is a bracket on
sections of E, which satisfy a list of axioms obtained by differentiation of the groupoid axioms. A
Lie algebroid is called integrable if it arises as the associated Lie algebroid of some Lie groupoid, and
we say that the Lie groupoid is an integration of the Lie algebroid. Integrations do not necessarily
exist nor are they necessarily unique when they do. This area has been much studied; see for
instance [20, 21] and references therein.

On the other hand, a Poisson manifold (M,π) has an associated Lie algebroid, namely E = T ∗M ,
π# : T ∗M → TM , and [α, β] = dπ(α, β). When (G,ω) is a symplectic groupoid, the associated
Lie algebroid is of this form. That is to say, given a symplectic groupoid (G,ω) there is a unique
Poisson structure π onM such thatG is an integration of the Lie algebroid associated to this Poisson
structure. We then say that (G,ω) is a symplectic integration of (M,π). A Poisson manifold (M,π)
is called integrable if it admits a symplectic integration. Integrations are not unique when they exist,
but the s-simply connected2 integration is unique (analogous to the simply connected integration
of a Lie algebra).

Since the main object of study in this paper is a symplectic groupoid, all Poisson manifolds that
appear are integrable. Our perspective is that a symplectic groupoid is a symplectic manifold with
an extra structure that, in particular, encodes an integrable Poisson structure on another manifold.

2s-simply connected means that the fibers of s : G→M are simply connected.
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2.3. Action on the symplectic leaves. Given a groupoid G, the set of objects M is partitioned
into isomorphism classes. If F ⊆ M is one such isomorphism class, then G acts on F in the sense
that there is a map

(2) a : G×M F → F

where G ×M F is the fiber product of s : G → M and the inclusion F → M . This map sends a
pair (g, x) ∈ G× F such that s(g) = x to t(g) ∈ F .

In the context of symplectic groupoids, the isomorphism classes are the leaves of the symplectic
foliation on (M,π). Thus a symplectic groupoid acts on the leaves of the symplectic foliation.

2.4. Everything is a Lagrangian. The structure of a symplectic groupoid is very rich from
the point of view of Lagrangian correspondences. The condition that the symplectic structure
be multiplicative translates into the condition that the graph of multiplication is a Lagrangian
correspondence. Let us recall the notation that if (G,ω) is a symplectic manifold, then we write G
to mean (G,−ω).

Proposition 2.4.1. Let (G,M, s, t, e, i,m, ω) be a symplectic groupoid. Then

(1) the graph of multiplication

m = {(x, y, z) | z = m(x, y)}

is Lagrangian in G×G×G;
(2) the identity section e : M → G is a Lagrangian embedding, so

e = {e(x) | x ∈M}

is a Lagrangian submanifold of G;
(3) the inversion map i : G→ G is an antisymplectomorphism, so its graph

i = {(x, i(x)) | x ∈ G}

is Lagrangian in G×G.

An analogous result holds for the action of (G,ω) on the symplectic leaves of M .

Proposition 2.4.2. Let G,M , etc., as above, and let F ⊆ M be an isomorphism class. Then
F carries a symplectic structure ωF induced by the Poisson structure of M , and the graph of the
action

a = {(g, x, y) | s(g) = x, t(g) = y} =
⋃

x,y∈F
HomG(x, y)

is Lagrangian in G× F × F .

3. Fukaya categories, functors, and monoidal structures

3.1. Categories. In this section we shall recall in brief outline how functors between Fukaya cat-
egories arise from Lagrangian correspondences. The culmination of this theory is meant to be a
2-category (or even (∞, 2)-category) whose objects are symplectic manifolds, which enhances We-
instein’s original proposal [79]. For a fuller treatment of the construction of this 2-category, see the
articles by Wehrheim, Woodward, Ma’u and Bottman [76, 75, 78, 77, 58, 17, 13, 14, 16], as well as
the treatment by Fukaya [30].

Given a symplectic manifold X, the Fukaya A∞-category F(X) is a triangulated A∞-category
that is generated by Lagrangian branes. A Lagrangian brane has a geometric support, which is a
Lagrangian submanifold L ⊂ X. The passage from Lagrangian branes to Lagrangian submanifolds
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is neither one-to-one nor onto in general. Given two Lagrangian branes K,L whose supports
intersect transversely, their morphisms form a cochain complex,

(3) hom∗(K,L) =
⊕

p∈K∩L
Kp

where Kp is a certain one-dimensional vector space attached to the intersection point p ∈ K ∩ L
(its precise definition depends on the brane structures). There is a differential

(4) µ1 : hom∗(K,L)→ hom∗(K,L)[1]

defined by counting inhomogeneous pseudo-holomorphic strips with boundary on K and L. The
next piece of structure is the composition,

(5) µ2 : hom∗(L1, L2)⊗ hom∗(L0, L1)→ hom∗(L0, L2),

defined for a triple (L0, L1, L2) of branes by counting inhomogeneous pseudo-holomorphic triangles.
This composition is not necessarily associative at chain level, but the failure of associativity is
trivialized by a homotopy operator µ3 that takes 3 inputs, has degree −1, and counts pseudo-
holomorphic quadrilaterals. This hierarchy continues to all orders with higher homotopies µk that
take k inputs, have degree 2 − k, and count pseudo-holomorphic (k + 1)-gons. The system of
identities that these operators satisfy are called the A∞-equations.

Once the A∞-category of Lagrangian branes B(X) is set up as in the previous paragraph, the
full Fukaya A∞-category F(X) is constructed from this category by a formal enlargement process
that adds all sums, shifts, cones, and summands of objects. One way to define it is to consider the
Yoneda embedding (see below) of B(X) into ModB(X), the category of modules over B(X), and
take idempotent complete triangulated envelope of the image.

3.2. Modules. Given an A∞-category A, we can form its category of modules

(6) ModA = Fun(Aop,ChK)

The objects are A∞-functors from A to the differential graded category of chain complexes over
K, and ModA is an A∞-category in its own right. Rather than spelling this out, we give the
paradigmatic example from which the general definition can be inferred. Given an object L ∈ ObA,
we can define a module YL, the Yoneda module of L, whose value on the object K ∈ ObA is

(7) YL(K) = hom∗(K,L)

Analogously to the case of ordinary categories, the association L 7→ YL extends to an A∞-functor
A→ ModA that is a quasi-equivalence onto its image.

3.3. Lagrangian correspondences and the 2-category Symp. Now suppose that (X,ωX)
and (Y, ωY ) are two symplectic manifolds. Denote by X the symplectic manifold (X,−ωX), and
by X×Y the Cartesian product with the symplectic form (−ωX)×ωY . A Lagrangian submanifold
C ⊂ X×Y is called a Lagrangian correspondence from X to Y . The project initiated by Wehrheim
and Woodward around the year 2007 associates to a correspondence equipped with a brane structure
a functor [58, Theorem 1.1]3

(8) F(C) : F(X)→ ModF(Y )

At the object level, this functor can be described neatly by declaring that, for L ∈ ObF(X), the
F(Y )-module F(C)(L) has as its value on K ∈ ObF(Y ) the complex

(9) F(C)(L)(K) = hom∗
X×Y (L×K,C)

3The Ma’u-Wehrheim-Woodward construction yields a functor F](C) : F](X) → F](Y ), where F] denotes the
extended Fukaya A∞-category. In (8) we are pre-composing this with the inclusion F(X) → F](X), and post-
composing with the functor F](Y )→ ModF(Y ). This perspective is also used in [30, 36].
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which is nothing but the Floer cochain complex computed in the product X × Y . While neat, this
formulation is not well-suited to understanding the higher components of the module F(C)(L). It
is more effective to switch reformulate this complex as a so-called quilted Floer cohomology cochain
complex QCF ∗(K,C,L) that depends on the three objects K,C,L and whose differential counts
quilted strips with an interior seam. Then one defines the higher components of the A∞-module
F(C)(L) by counting certain quilted polygons. Then one must show that the resulting modules
F(C)(L) are functorial with respect to L in the A∞ sense, and this involves another class of quilted
surfaces.

There are several more layers to the story that are related to one another. The first layer is the
question of whether the module F(C)(L) ∈ Ob ModF(Y ) is representable, which is to say, whether
this module is equivalent to one of the form YK for some K ∈ ObF(Y ). There is a natural candidate
for the Lagrangian submanifold of Y on which the representing object could be supported, namely
the geometric composition

(10) C ◦ L = {y ∈ Y | (∃x ∈ L)((x, y) ∈ C)}

This need not be a manifold, but when it is, one strives to prove that there is a brane structure
on it such that it represents F(C)(L). Such a result is known in the subject as a “geometric
composition theorem.” The second layer is to understand the sense in which F(C) is functorial
with respect to C. Namely, given correspondences C1 ⊂ X × Y and C2 ⊂ Y × Z, to understand
whether the composition F(C2)◦F(C1) be expressed in terms of the geometric composition C2 ◦C1

of the correspondences. This is often possible when the composition C2 ◦ C1 is transverse and
embedded; a general result of this form is given by [58, Theorem 1.2]. Another approach is due to
Lekili-Lipyanskiy [46, 47].

The third layer is to express the functoriality of the composition operation itself as a A∞-bifunctor

(11) ◦ : F(X × Y )× F(Y × Z)→ F(X × Z),

but there now may be a problem precisely because geometric composition is not always possible.
Ma’u-Wehrheim-Woodward solve this by passing from the Fukaya A∞-category F(X × Y ) to its
extended version F](X,Y ) whose objects are chains of correspondences from X to Y . Another
approach is to enlarge F(X ×Y ) to the A∞-category of A∞-bimodules F(X)–mod–F(Y ), and take
(11) to be the tensor product over F(Y ). The formal arguments in this paper could be made using
either version. In any case we refer to (11) as the Ma’u-Wehrheim-Woodward composition functor.
The ∞-categorical aspect to this construction is currently under further development by Bottman
and Wehrheim [17, 13, 14, 16].

The ultimate package that this line of research produces is a 2-category Symp (call it the
“Weinstein-Donaldson-Fukaya-Wehrheim-Woodward category”) whose objects are symplectic man-
ifolds, whose 1-morphisms are Lagrangian correspondences, and whose spaces of 2-morphisms are
Floer cohomology groups. The 2-category has additional structure that we shall make use of.

(1) There is a monoidal structure given by the Cartesian product (X,Y ) 7→ X×Y of symplectic
manifolds. The unit object is pt.

(2) There is an involution on objects X 7→ X that reverses the sign of the symplectic form.
This extends to an involutive autoequivalence of Symp that is covariant with respect to
1-morphisms and contravariant with respect to 2-morphisms.

(3) Combining the two points above, we can regard X×Y as the internal hom object in Symp,
meaning that there is an equivalence of categories

(12) HomSymp(pt, X × Y ) ∼= HomSymp(X,Y )

This is merely a restatement of the construction of 1-morphisms from correspondences.

On the other hand, there is also a 2-category of small A∞-categories A∞cat. Because any A∞-
category is equivalent to a DG category, we expect that A∞cat is equivalent to the 2-category of DG
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categories DGcat. Such an equivalence is known to hold when A∞cat and DGcat are considered
as (∞, 1)-categories (see Section A.4.1). In A∞cat, the objects are small A∞-categories, the 1-
morphisms are A∞-functors, and the 2-morphisms are A∞-natural transformations. This category
has a monoidal structure given by the appropriately defined tensor product of A∞-categories (see
Section A.4.4). It also has a duality that takes a category to its opposite A 7→ Aop; it is not obvious
but true that this can be extended to an involution on A∞cat that is covariant with respect to
1-morphisms and contravariant with respect to 2-morphisms [22, Section E.6].

With these concepts, and following Wehrheim-Woodward, we may conceive of the Fukaya A∞-
category as a functor

(13) F : Symp→ A∞cat

between 2-categories. As Wehrheim-Woodward observed [74], this is nothing but the 2-categorical
Yoneda embedding for the object pt, since F(X) = HomSymp(pt, X).

Remark 3.3.1. Although we have considered A∞cat and DGcat as 2-categories above for philo-
sophical reasons, for our applications it suffices to consider A∞cat and DGcat as (∞, 1)-categories.
This is because the homotopy-coherent monoidal structures we wish to study are defined by func-
tors that satisfy relations up to 2-isomorphism: non-invertible 2-morphisms do not play a role.
This is precisely the same remark that makes the inductive definition of (∞, n)-categories possible
[51, p. 6].

Remark 3.3.2. A different way of describing the abstract structure that governs the 2-category
Symp, borrowed from physics, is as a two-dimensional topological field theory with boundary condi-
tions and codimension-one defects. Codimension-one defects, called interfaces by Gaiotto-Moore-
Witten [33, 32] and also known as domain walls, correspond to the seams in quilted Floer theory.
This is just another way of saying that the structure is governed by the degenerations of quilted sur-
faces. In this language, the geometric composition problem corresponds to the problem of colliding
the defects with each other and with the boundary conditions.

3.4. Good solutions. We shall now make more precise what we actually need from Symp for our
formal arguments. It what follows, F(X) denotes the idempotent complete triangulated Fukaya
A∞-category of X. We refer to Section A.2 for the definition of the S-colored simplex category
∆S , and to Section A.8 for the definition of Segal categories.

Definition 3.4.1 (Good solution for a fixed collection of symplectic manifolds). Let S = {Mi}i∈I
be a set whose elements are symplectic manifolds. Let ∆S be the S-colored simplex category. We
say that S admits a good solution to the composition problem if there is a Segal category enriched
in A∞-categories X : N(∆op

S )→ A∞cat whose value on 1-simplices is

X([Mi,Mj ]) = F(M i ×Mj),

and such that the span

X([Mi,Mj ])×X([Mj ,Mk])← X([Mi,Mj ,Mk])→ X([Mi,Mk])

(where the leftward arrow is a quasi-equivalence by the Segal condition) induces a functor

F(M i ×Mj)× F(M j ×Mk)→ F(M i ×Mk)

that is homotopic to the Ma’u-Wehrheim-Woodward composition functor.

Definition 3.4.2 (Good solution for a fixed subcategory of the Weinstein category). Let S =
{Mi}i∈I be a set of symplectic manifolds, and let C be a set of correspondences between the
elements of S such that all geometric compositions of elements of C are transverse and embedded,
and such that C is closed under geometric composition. Let C(Mi,Mj) denote the subset of C
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consisting of correspondences from Mi to Mj . We say that (S,C) admits a good solution to the

composition problem if each object of C(Mi,Mj) may be made into an object of F(M i × Mj)
that defines a functor F(Mi) → F(Mj), and there is a Segal category enriched in A∞-categories
X : N(∆op

S )→ A∞cat whose value on 1-simplices is

X([Mi,Mj ]) = 〈C(Mi,Mi)〉 ⊂ F(M i ×Mj),

where 〈C(Mi,Mj)〉 denotes the full A∞-subcategory with objects C(Mi,Mj), and such that the
induced composition

〈C(Mi,Mj)〉 × 〈C(Mj ,Mk)〉 → 〈C(Mi,Mk)〉
is homotopic to the Ma’u-Wehrheim-Woodward composition functor.

If a set S of symplectic manifolds admits a good solution to the composition problem, then it
is possible to construct an ∞-category SympS that is the fragment of Symp with these objects.
To do this, we compose the given map X : N(∆op

S ) → A∞cat with the A∞-nerve construction
NA∞ : A∞cat→ Cat∞ (see Section A.4.2). Then we pass from Cat∞ to∞-groupoids by throwing
away the noninvertible morphisms. This yields a Segal category enriched over ∞-groupoids, which
is what is usually meant by the term “Segal category.” It is known that the category of Segal
categories and the category of ∞-categories are Quillen equivalent [39], and passing through this
equivalence we obtain an ∞-category that we denote SympS . Note that SympS is an (∞, 1)-
category.

If a subcategory (S,C) with fixed correspondences admits a good solution, we may apply the
same construction to obtain a fragment Symp(S,C) whose objects are the elements of S and whose
1-morphisms are the elements of C.

Remark 3.4.3. While we shall not prove in this paper that any particular collection of symplectic
manifolds admits a good solution in the sense of these definitions, we shall remark on why these are
reasonable Ansätze for our formal arguments. Ongoing work of Bottman, Wehrheim, and others
proposes to construct Symp as an (A∞, 2)-category, where the homotopy associativity of all parts
of the structure are governed by the 2-associahedra [17, 13, 14, 16]. Just as it is known that various
different theories of (∞, 1)-categories are equivalent (see Section A.4 and [12, 39]), it is expected
that all different theories of (∞, 2)-categories are equivalent. For several classes of definitions of
(∞, n)-categories, this is proved in [9]. The concept of a Segal category enriched in A∞-categories
is simply the version that is most natural for the arguments in this paper.

For our desired application to symplectic groupoids, it suffices to construct a fragment of Symp
as an ∞-category. Given an (A∞, 2)-category, it may be possible to construct a (∞, 1)-categorical
nerve (throwing away non-invertible 2-morphisms) that will be an ∞-category, similar to the A∞-
nerve constructed by Faonte and Tanaka.

3.5. From symplectic groupoids to monoid objects. We now show how symplectic groupoids
naturally give rise to monoid objects in various categories. We refer to the Appendix for background
on the theory of monoid objects in higher category theory. Let ∆ denote the simplex category
whose objects are finite nonempty ordinals [n] = {0 < 1 < · · · < n}, and whose morphisms are
monotonic maps. Let ∆a denote the augmented simplex category, which also contains the empty
set [−1] = ∅. We often use the notation n = [n − 1] for objects of ∆a. The category ∆a carries
a monoidal structure ⊕ given on objects by ordinal addition. See the Appendix for more details.
Let Man denote the category of smooth manifolds and smooth maps. We begin with a fact about
Lie groupoids.

Proposition 3.5.1. Let (G,M, s, t, e, i,m) be a Lie groupoid. Then there is a simplicial object in
the category of smooth manifolds X : ∆op → Man whose value on [n] is

X([n]) = G×M G×M · · · ×M G,
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the set of composable sequences of arrows of length n, whose face maps are given by projecting out
the first factor, composition of two consecutive arrows, or projecting out the last factor, and whose
degeneracy maps are given by inserting unit elements.

Note that the definition of a Lie groupoid implies that the fiber product in this definition is
transverse. This proposition is nothing but the nerve construction applied internally in the category
Man. The fact that X is a simplicial object encodes the associativity and unitality of the groupoid
structure, but not the existence of inverses.

Now let Symp denote the Weinstein “category,” that is, the partial category where objects are
symplectic manifolds, morphisms are Lagrangian correspondences, and composition is only defined
when it is transverse and embedded. It is possible for Symp to contain a genuine category, meaning
a collection of morphisms such that all compositions are defined and the collection is closed under
composition.

One might guess that a symplectic groupoid G gives rise to a simplicial object X : ∆op → Symp,
but this is false. The culprit are the first and last face maps, which are meant to be projections.
For symplectic manifolds X and Y , the projection X × Y → X is not given by a Lagrangian
correspondence.4 Our strategy for overcoming this difficulty is to simply delete the offending face
maps from the category ∆. This yields the category ∆int ⊂ ∆ whose morphisms are monotonic
maps that preserve the minimum and maximum elements. There is an isomorphism ∆op

int
∼= ∆a

with the augmented simplex category, so we are led to consider augmented cosimplicial objects
instead of simplicial objects. Forgetting the projections leads to a structure that is a bit too weak,
and we remedy this by requiring that the cosimplicial object extends to a monoidal functor from
(∆a,⊕); see Definition A.3.6.

Proposition 3.5.2. The assignment XG(0) = pt, XG(n) = G×n may be extended to an augmented
cosimplicial object XG : ∆a → Symp:

(14) pt // G
//
// G×Goo //

//

//
G×G×Goo

oo · · ·

where the left-to-right correspondences insert e : pt → G, and the right-to-left correspondences
come from applying m : G × G → G to two consecutive factors. Furthermore, XG extends to a
monoidal functor (∆a,⊕)→ (Symp,×). In other words, XG is a monoid object in (Symp,×).

Proof. The cosimplicial identities are direct consequences of the associativity and unitality of the
groupoid. The transversality of the compositions is guaranteed by the fact that s, t : G → M
are submersions. The fact that XG extends to a monoidal functor reflects the fact that all of the
coface and codegeneracy maps are generated by the unit e : XG(0)→ XG(1) and the composition
m : XG(2) → XG(1). The natural isomorphism Jn,m : XG(n)×XG(m) → XG(n⊕m) is just the
associativity constraint for the Cartesian product of manifolds. �

In the Appendix, we present the definition of a monoidal∞-category and a ⊗-monoid object in a
monoidal∞-category (C,⊗), which we take to be either (Symp,×) or (A∞cat,⊗). This discussion
culminates in Definitions A.6.1 and A.6.2, which may be read now. This definition is not entirely
standard, but it is an ∞-categorical variation of the definition of a homotopy monoid introduced
by Leinster [45]; the Appendix derives it from standard notions in higher category theory.

The definitions may be summarized as saying that the diagram (14) in Symp may be lifted to
a homotopy coherent diagram in Symp or A∞cat. The structure is encoded by an augmented
cosimplicial object X : N(∆a) → C from the nerve of ∆a to C, together with the data of an
extension to a monoidal functor from (N(∆a),⊕). This is a way of encoding homotopy associativity:
the cosimplicial identities that encode associativity and unitality are not required to hold strictly,
but the higher-dimensional cells in N(∆a) index a family of coherent homotopies.

4In higher category theory, this observation is expressed by the statement “the Cartesian product of symplectic
manifolds is a non-Cartesian monoidal structure on Symp.” See Section A.6.
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Theorem 3.5.3. Let G be a symplectic groupoid. Suppose that the set S = {G×n | n ≥ 0}
consisting of all Cartesian powers of G admits a good solution to the composition problem. Then
G is a ×-monoid object in SympS.

Suppose either the previous hypothesis, or merely that the subcategory (S,C) of Symp obtained
as the image of the map XG : ∆a → Symp admits a good solution to the composition problem. Also
assume that each correspondence G×n → G×m defines a functor F(G)⊗n → F(G)⊗m. Then F(G)
is an ⊗-monoid object in A∞cat.

Proof. Suppose that S admits a good solution. This implies that SympS exists as an ∞-category.
Consider the ordinary category ∆a as a subcomplex of its nerve N(∆a). The assumption that our
correspondences define functors says that the augmented cosimplicial object XG : ∆a → Symp may
be lifted to a map X1 : ∆a → SympS . Because our correspondences are geometrically composable,
and this composition is associative up to coherent homotopy (by the axioms of the Segal category
from which SympS was constructed), this map may be extended over the higher cells in N(∆a)
to obtain a map X : N(∆a) → SympS . Since the original functor XG : (∆a,⊕) → (Symp,×) is
monoidal, we can choose these extensions over the higher cells so that XG extends to a morphism of
monoidal ∞-categories (N(∆a),⊕)→ (SympS ,×), which is to say a ×-monoid object in SympS .

In the case where we merely assume that (S,C) admits a good solution, we use the fragment
Symp(S,C) that has a restricted class of 1-morphisms. Because we have assumed that all elements

of C define functors, we have a map of ∞-categories Symp(S,C) → A∞cat that takes G×n to

F(G)⊗n. As before, we may lift the map XG : ∆a → Symp to a map X1
G : ∆a → A∞cat, and use

the homotopy coherent solution to the composition problem to extend XG to a monoidal functor
(N(∆a),⊕)→ (A∞cat,⊗). �

Remark 3.5.4. The condition that each correspondence defines a functor F(G)⊗n → F(G)⊗m may
be simplified. Every morphism f : [n]→ [m] in ∆a is described by choosing a k-element subset of
[m] that is the image, and a partition of the domain [n] into k intervals on which f is constant.

The corresponding Lagrangian correspondence G×(n+1) → G×(m+1) is constructed by inserting e :
pt→ G for each element not in the image of f , and inserting the `-fold composition correspondence
G×` → G for each interval of length ` (when ` = 1 this is the diagonal, and when ` = 2, it is m).
Thus every correspondence in the diagram is obtained as the ×-product of the identity and `-fold
composition correspondences, and all that is needed is that the `-fold composition defines a functor
F(G)⊗` → F(G).

The moral of this story is that the problem of constructing homotopy coherent monoid objects
is a subproblem of the general problem of homotopy coherent composition for Lagrangian corre-
spondences.

Now we turn to the corresponding results for module objects. The proofs are formally the same
as what has been done above. For monoid-module pairs, the relevant indexing object is the pair
(∆a,∆

+
a ) consisting of the monoidal category ∆a and its module category ∆+

a . The category ∆+
a

contains ∆a but has one more face map at each level to encode the action on the module. See
Definition A.7.2 for the concept of ⊗-monoid-module pair in a monoidal ∞-category (C,⊗).

Theorem 3.5.5. Let G be a symplectic groupoid and let F be a symplectic leaf of the underlying
Poisson structure. There is a diagram X(G,F ) : ∆+

a → Symp of the form

(15) F // G× F //oo
// G×G× F

oo
oo · · ·

whose restriction to ∆a ⊂∆+
a is obtained by taking XG times the fixed manifold F , and such that

the additional face maps are given by the action correspondence a : G× F → F .
If the set S = {G×n, G×n × F | n ≥ 0} admits a good solution of the composition problem, then

this diagram may be lifted to a map X : N(∆+
int)

op → Symp making (G,F ) into a ×-monoid-
module pair in Symp.
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If at least the subcategory of Symp consisting of the correspondences appearing in this diagram
admits a good solution, and each correspondence defines a functor F(G)⊗n ⊗ F(F ) → F(G)⊗m ⊗
F(F ), then (F(G),F(F )) has the structure of a ⊗-monoid-module pair in A∞cat.

Remark 3.5.6. One may also formulate the notion of monoid objects for the Cartesian monoidal
structures on Symp and A∞cat. The Cartesian monoidal structure on A∞cat is the product
of categories. The Cartesian monoidal structure on Symp is the disjoint union of symplectic
manifolds: because X × (Y

∐
Z) = (X × Y )

∐
(X ×Z), a Lagrangian correspondence X → Y

∐
Z

is the same thing as a pair of Lagrangian correspondences X → Y and X → Z (provided we allow ∅
as a Lagrangian submanifold). This would allow us to use the simpler definition of monoid objects
in an∞-category (Definition A.5.1). The homotopy coherence problem is not really any easier if we
do this, and interpreting the correspondence m ⊂ G×G×G in this formalism is challenging. This
is why we prefer to formulate things a way that is formally more sophisticated but geometrically
more natural.

Remark 3.5.7. There are situations where the idempotent complete triangulated Fukaya A∞-
category F(G) is not large enough for the monoidal structure to be defined, but it may nevertheless
happen that ModF(G) admits a monoidal structure even though F(G) does not. An example of
this phenomenon is furnished by the wrapped Fukaya A∞-category of a cotangent bundle T ∗M
regarded as a symplectic groupoid over M (see section 4.2 below).

Remark 3.5.8. It seems that the first person to observe the expected existence of these structures
was M. Gualtieri [38] around the year 2009 when the quilt theory first came into general use in
symplectic topology.

3.6. Monoid objects with duality. So far we have not used the inversion correspondence i ⊂ G×
G. We will now study how this correspondence equips the monoid objectsG and F(G) with a duality
involution. In this section, we will suppress questions of homotopy coherence, although it should
be possible to extend the notion of homotopy-coherent monoid objects presented in the Appendix
to include duality by enlarging the indexing category ∆a. The reader may therefore assume that
in this section we are dealing with cohomology-level Fukaya categories (what Wehrheim-Woodward
refer to as the Donaldson category).

We shall work in a 2-category C which has a symmetric monoidal product × and unit object pt.
In the applications C is either Symp or A∞cat. To treat the 2-morphisms properly, we assume
that C is not merely symmetric monoidal, but is also equipped with an involution X 7→ X that
is covariant with respect to 1-morphisms and contravariant with respect to 2-morphisms. We call
such an involution a co-involution5, and we assume it is compatible with the symmetric monoidal
structure in the natural sense. We also assume that X×Y is an internal Hom object, meaning that
HomC (pt, X×Y ) ∼= HomC (X,Y ). There is then a canonical 1-morphism ∆X ∈ HomC (pt, X×X)
corresponding to the identity 1-morphism of X. We further assume that given two 1-morphisms
E,F ∈ HomC (pt, X ×X) ∼= HomC (X,X), we have isomorphisms

(16) 2-Hom(E,F ) ∼= 2-Hom(∆X , E × F ) ∼= Hom(E × F ,∆X).

These assumptions are all reasonable when thinking of 1-morphisms as correspondences.

Definition 3.6.1. Let (C ,×,pt, (·)) be a symmetric monoidal 2-category with co-involution as
above. A monoid-with-duality object in C is an object G, together with 1-morphisms m : G×G→ G

5Recall that a 2-category has three different duals: C co where the 2-morphisms reversed, C op where the 1-morphisms
are reversed, and C co,op where both 1- and 2-morphisms are reversed. A co-involution is so called because it is a
2-functor C → C co.
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and e : pt→ G, and a 1-isomorphism i : G→ G, together with a collection of 2-isomorphisms

(17)

m ◦ (1G ×m) ∼= m ◦ (m× 1G),

m ◦ (1G × e) ∼= 1G,

m ◦ (e× 1G) ∼= 1G,

i ◦m ∼= m ◦ (i× i) ◦ τG,
m ◦ (i× 1G) ◦∆G = e,

m ◦ (1G × i) ◦∆G = e,

where τG : G × G → G × G is the map that swaps the factors, and ∆G ∈ HomC (pt, G × G)
corresponds to the identity 1-morphism 1G ∈ HomC (G,G).

Remark 3.6.2. This notion differs from the proper notion of group object in a monoidal category,
which is the notion of a Hopf algebra. A Hopf algebra is also equipped with a comultiplication
∆ : G → G × G and a counit ε : G → pt that satisfy several compatibility relations with m, e,
and i. In this context i is usually called the antipode. This structure does not exist on a general
symplectic groupoid; see section 3.7 for further discussion.

Proposition 3.6.3. Suppose that (G,m, e, i) is a monoid-with-duality object in a 2-category (C ,×,pt, (·))
as above. Let G = HomC (pt, G) be the category of 1-morphisms from the unit object to G. Then m
and e induce monoidal structures (⊗,O) on G and G op, and i induces an equivalence D : G → G op

such D(E ⊗ F ) ∼= DF ⊗ DE for any objects E and F of G . For each object E of G there is an
evaluation 2-morphism E ⊗DE → O and a coevaluation 2-morphism O→ E ⊗DE.

Proof. First observe that because X 7→ X is a co-involution, it induces an equivalence of categories

(18) HomC (pt, G) ∼= HomC (pt, G)op = G op

The operation ⊗ is defined by the composition

(19) HomC (pt, G)×HomC (pt, G)→ HomC (pt, G×G)→ HomC (pt, G)

where the second arrow is post-composition with m. The unit object O is e regarded as an object
of HomC (pt, G). The first three axioms in (17) imply that this is a monoidal structure. By taking
m and e, we also see that G is a monoid object, so G op also has a monoidal structure, which we
denote by the same symbols (⊗,O).

The statement that D(E ⊗ F ) ∼= DF ⊗DE follows from the fourth axiom in (17).
The evaluation 2-morphisms are obtained as follows. Given E ∈ G , let E ∈ G op denote the same

object regarded as belonging to the opposite category. Apply the ambient symmetric monoidal
product × to obtain a 1-morphism E ⊗ E : pt = pt × pt → G × G. On the other hand, we have
the diagonal 1-morphism ∆G : pt→ G×G. Post-composing these 1-morphisms with m ◦ (1G× i),
we obtain

m ◦ (1G × i) ◦∆G = e = O,

m ◦ (1G × i) ◦ (E × E) = E ⊗DE

Because composition with a 1-morphism is functorial with respect to 2-morphisms, we obtain a
map on 2-morphism spaces:

(20) m ◦ (1G × i) : 2-Hom(E × E,∆G)→ 2-Hom(E ⊗DE,O).

The domain of this map may be identified with HomG (E,E), and taking the image of 1E ∈
HomG (E,E) under (20) yields a distinguished 2-morphism E ⊗DE → O, which is our evaluation
map. The coevaluation map is constructed by considering 2-morphisms from ∆G to E×E instead.

�
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Remark 3.6.4. In order for DE to really be the dual of E, these evaluation and coevaluation maps
should satisfy compatibility relations, essentially saying that there are isomorphisms 2-Hom(E,E) ∼=
2-Hom(O, E ⊗ DE). When this holds, G then carries the structure of a rigid monoidal category.
Since we shall not use this property, we shall defer this question.

In light of the foregoing discussion, we now have the following enhancement of Theorem 3.5.3:

Proposition 3.6.5. Let (G,M, s, t, e, i,m, ω) be a symplectic groupoid. Then G is a monoid-with-
duality object in the Weinstein category Symp of symplectic manifolds and Lagrangian correspon-
dences. Assuming a good solution the composition problem for S = {G×n | n ≥ 0}, G can be
made into a monoid-with-duality object in the 2-category Symp, and hence the cohomology-level
Fukaya category H0(F(G)) admits a monoidal structure (⊗,O) and op-equivalence D : H0(F(G))→
H0(F(G))op as in Proposition 3.6.3.

Proof. Given a symplectic groupoid G, the axioms of a monoid-with-duality are precisely the asso-
ciativity of m, unitality of e, and the statement that i acts like an inverse; these hold because G is
a groupoid. This proves the first assertion. The second assertion follows because the good solution
hypothesis means that these identities, formulated as geometric compositions of correspondences,
can be lifted to isomorphisms of functors between Fukaya categories, at least at the cohomology
level. �

3.7. Drinfeld doubles and Hopf algebra objects. As mentioned in remark 3.6.2 above, the
“true” notion of a group-like object in a category is that of a Hopf algebra. In the context of
the 2-category Symp, this means that in addition to the composition m : G × G → G, the unit
e : pt→ G, and the inversion i : G→ G, there is also a comultiplication δ : G→ G×G and counit
ε : G → pt. In this context the inversion is called the antipode. The comultiplication and counit
must satisfy the duals of the associativity and unitality axioms. There is a compatibility between
the multiplication and comultiplication,

(21) δ ◦m = (m×m) ◦ (1G × τG × 1G) ◦ (δ × δ).

For a general symplectic groupoid, there does not seem to be any way to construct δ satisfying this
axiom.

However, it is possible to construct δ for the case G = T ∗K is the cotangent bundle of a
compact Lie group K. As we shall see in the next section, this symplectic manifold is a symplectic
groupoid in two ways, once as the cotangent bundle of a manifold, and second as the symplectic
integration of the canonical Poisson structure on the dual of the Lie algebra k∗. We can use one
symplectic groupoid structure to define the multiplication, and the transpose of the other to define
the comultiplication. Since there are two choices for which groupoid structure corresponds to
multiplication, we get two dual Hopf algebra objects in Symp.

There is actually a natural source of symplectic manifolds carrying two compatible groupoid
structures as G = T ∗K does. Namely, one takes a Poisson-Lie group (H,π), where H is a Lie
group and π is a Poisson structure on the underlying manifold of H such that the group operation
H × H → H is a Poisson map. A symplectic integration (G,ω) of (H,π) (which will necessarily
have twice the dimension of H) is called a Drinfeld double of (H,π). There is a dual Poisson-Lie
group (H∨, π∨) and (G,ω) is also a symplectic integration of (H∨, π∨) (briefly, the Lie algebra h
of a Poisson-Lie group is a Lie bialgebra, and there is an involution on Lie bialgebras that takes h
to h∗). Thus (G,ω) carries two symplectic groupoid structures, and we expect the Fukaya category
F(G,ω) to be a Hopf algebra in the 2-category A∞cat.
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4. Examples of monoidal Fukaya categories

In this section we run through several examples of symplectic groupoids and their associated
monoidal Fukaya categories. We organize the examples according to the underlying Poisson struc-
ture.

4.1. The case of π nondegenerate. Let (M,π) be a nondegenerate Poisson manifold. Then
taking ω = π−1, we get a symplectic manifold (M,ω). The most obvious symplectic integration of
this Poisson manifold is G = M ×M . This is known as the pairs groupoid.

Now consider the Fukaya A∞-category F(M ×M). This is precisely the category of Lagrangian
correspondences M →M . Such correspondences induce A∞-endofunctors of F(M), and thus there
is a functor

(22) F(M ×M)→ Fun(F(M),F(M)).

Alternatively, objects in F(M ×M) give rise to A∞-bimodules over F(M) (modules with a left and
a right action by F(M)), yielding a A∞-functor

(23) F(M ×M)→ F(M)–mod–F(M)

From a bimodule, one recovers an endofunctor by tensoring with the bimodule.
On F(M ×M):

• The monoidal product ⊗ is composition of correspondences in F(M ×M).
• The unit object O is the diagonal in M ×M .
• The duality D is transpose of correspondences in M ×M .

On Fun(F(M),F(M)):

• The monoidal product ⊗ is composition of functors in Fun(F(M),F(M)).
• The unit object O is the identity functor in Fun(F(M),F(M)).
• The duality D is an equivalence Fun(F(M),F(M)) → Fun(F(M)op,F(M)op). Note that

the latter category is indeed naturally regarded as the opposite of the former [22, Section
E.6].

On F(M)–mod–F(M):

• The monoidal product ⊗ is the tensor product of bimodules over F(M).
• The unit object O is the bimodule F(M) with its standard left and right actions.
• The duality D is an equivalence F(M)–mod–F(M)→ F(M)op–mod–F(M)op.

To go some way toward justifying that these monoidal structures are indeed the same, we have
the following proposition whose proof is immediate.

Proposition 4.1.1. Let G = M ×M , regarded as a symplectic groupoid, and let m, e, and i be as
in Proposition 2.4.1.

• The composition bifunctor F(G) × F(G) → F(G) is represented by a Lagrangian brane in
G×G×G whose underlying Lagrangian submanifold is m.
• The identity functor F(M) → F(M) is represented by a Lagrangian brane in G whose

underlying Lagrangian submanifold is e.
• The transpose functor F(G)→ F(G) is represented by a Lagrangian brane in G×G whose

underlying Lagrangian submanifold is i.

In this case, there is a single isomorphism class/symplectic leaf consisting of the entire manifold
M itself. Thus there is an action of F(G) on F(M), which is nothing but the action of endofunctors
of F(M) on F(M).
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4.2. The case of π = 0. On any smooth manifold M , the zero tensor π = 0 defines a Poisson
structure. A symplectic groupoid integrating this is G = T ∗M with its canonical symplectic form.
There are no morphisms between different points of M , and the endomorphisms of the point x ∈M
is T ∗xM with the group structure given by addition of covectors. Thus the identity section is the
zero section, and the inversion map is fiberwise negation.

Now assume M is real-analytic, and let us interpret F(G) = F(T ∗M) as the infinitesimal (Nadler-
Zaslow) Fukaya A∞-category. The Nadler-Zaslow correspondence [61, Theorem 1.0.1], [60] is a
quasi-equivalence of A∞-categories with constructible sheaves on M ,

(24) F(G) ∼= Shc(M).

The category Shc(M) has a well-known monoidal structure.

• The monoidal product ⊗ is the tensor product of constructible sheaves.
• The unit object O is the constant sheaf K on M .
• The duality D is Verdier duality.

In this case, our justification that these monoidal structures correspond to each other passes
through the Nadler-Zaslow correspondence: we can represent functors on Shc(M) as integral trans-
forms, whose kernels are constructible sheaves on Cartesian powers of M . From such a kernel
we obtain a Lagrangian brane from Nadler-Zaslow, and this can be compare with the structural
Lagrangians of the symplectic groupoid structure.

Proposition 4.2.1. Let G = T ∗M with the symplectic groupoid structure of fiberwise addition,
and let m, e, and i be as in Proposition 2.4.1.

• Let K∆3 ∈ Shc(M ×M ×M) be the constructible sheaf that represents the tensor product
on Shc(M). Then the singular support of K∆ is

(25) SS(K∆3) = {(q1, p1, q2, p2, q3, p3) | q1 = q2 = q3, p1 + p2 + p3 = 0} ⊂ T ∗(M ×M ×M)

where we use q to denote points of M and p to denote covectors. Under the isomorphism

(26) T ∗(M ×M ×M) ∼= G×G×G
that flips the sign of p1 and p2, SS(K∆) corresponds to m.
• Let KM ∈ Shc(M) be the constructible sheaf that is the unit for the tensor product. Then

(27) SS(KM ) = M ⊂ T ∗M = G

coincides with e.

The statement that fiberwise negation is Verdier duality is explained in [60, Section 3.4.1]. It is
slightly difficult to formulate in the framework of the proposition above because Verdier duality is
a contravariant functor, and so it does not have a kernel per se. On the other hand, it is natural
to convert contravariant functors into covariant ones by pre-composing with Verdier duality itself.
Then Verdier duality goes over to the identity functor, which is represented by a certain K∆2 in
Shc(M ×M), and

(28) SS(K∆2) = {(q1, p1, q2, p2) | q1 = q2, p1 + p2 = 0} ⊂ T ∗(M ×M)

and under the isomorphism T ∗(M ×M) = G×G, this Lagrangian corresponds to i.
In this case, the isomorphism classes/symplectic leaves are the singleton sets {p} ⊂ M . The

action correspondence a ⊂ T ∗M × {p} × {p} is the cotangent fiber T ∗pM . The category F({p}) is
equivalent to Perf(K), and the action

(29) ρ : F(T ∗M)× Perf(K)→ Perf(K)

takes a constructible sheaf E and a vector space V to Ep ⊗ V , the stalk of E at p tensored with V .
An alternative story involves a different version of the Fukaya category, namely the wrapped

Fukaya A∞-category W(T ∗M). By results of Abbondandolo-Schwarz and Abouzaid [2, 4, 5], this
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category is equivalent to the DG category of DG-modules over the DG-algebra C−∗(ΩM) of chains
on the based loop space of M , where the multiplication comes from concatenation of loops. More
precisely, we can write

(30) W(T ∗M) ∼= Perf C−∗(ΩM)

Such modules are also known as∞-local systems. The monoidal operation is tensor product of local
systems. One observes that this operation generally does not map a pair of objects in Perf C−∗(ΩM)
to one in Perf C−∗(ΩM), but rather to one in ModC−∗(ΩM). Thus it is not W(T ∗M) itself but
ModW(T ∗M) that carries a monoidal structure (compare remark 3.5.7 above).

4.3. The case of π = 0, M integral affine. As before, we take M a smooth manifold with π = 0.
As symplectic integrations are not unique, it may be possible to find a symplectic integration that
differs from T ∗M . As an instance of this phenomenon, assume that M carries an integral affine
structure. This means that M comes equipped with an atlas such that the transition functions
between coordinate charts are restrictions of the action of GL(n,Z)nRn on Rn to open sets. Then
the lattices of integral covectors in each cotangent space are invariantly defined and form a local
system of lattices Λ∗Z ⊂ T ∗M . Another symplectic integration of the zero Poisson structure is
then G = T ∗M/Λ∗Z, where the symplectic structure descends from T ∗M . Thus G is a nonsingular
Lagrangian torus fibration over M .

This is precisely the setting for Strominger-Yau-Zaslow mirror symmetry without corrections.
This case has been studied by Aleksandar Subotić in his 2010 Harvard Ph.D. thesis and other
unpublished work. Under mirror symmetry, F(G) is equivalent to Db Coh(X), where X is the
mirror Calabi-Yau variety.

• The monoidal product ⊗ is the tensor product of coherent sheaves.
• The unit object O is the structure sheaf OX .
• The duality D is coherent duality H om(−,OX). (OX is the dualizing sheaf on a smooth

Calabi-Yau.)

Proposition 4.3.1. The Lagrangian branes involved in the monoidal structure of Subotić are
supported on the Lagrangian submanifolds m,e, and i that determine the groupoid structure of
G = T ∗M/Λ∗Z.

Once again, the isomorphism classes/symplectic leaves are the singleton sets {p} ⊂ M . The
action correspondence a is the torus fiber Lp, which corresponds to the skyscraper sheaf of a point
on the mirror. Now F(G) acts on Perf(K) by tensoring with the fiber (not stalk) Hom(Op,E) of
the sheaf E at p.

4.4. The case of k∗. For a really interesting Poisson structure, one can consider the dual space
of a Lie algebra k.6 In this case, a symplectic integration is G = T ∗K, where K is a Lie group
integrating k.

Once again, using the Nadler-Zaslow quasi-equivalence, we may identify the infinitesimal Fukaya
A∞-category of G with Shc(K), constructible sheaves on K. Now the monoidal structure of interest
is the one that actually uses the fact that K is a Lie group.

• The monoidal product ⊗ is the convolution of sheaves, namely, push-forward under the
multiplication map m : K ×K → K.
• The unit object O is the skyscraper sheaf at the identity element e ∈ K.
• The duality D is pull-back under the inversion map i : K → K.

Proposition 4.4.1. Let G = T ∗K, with the symplectic groupoid structure that integrates the
Poisson structure on g∗, and let m,e, and i be as in Proposition 2.4.1.

6We use k (German ‘k ’) rather than g for the Lie algebra both to indicate that we are mainly interested in compact
groups and to avoid conflict with the use of the letter G for the symplectic groupoid.
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• The singular support of the kernel for convolution corresponds to m under the map T ∗(K3) ∼=
(T ∗K)3 ∼= T ∗K × T ∗K × T ∗K that flips the sign of the covector on the first two factors.
• The singular support of the unit object for convolution corresponds to e in G = T ∗K.
• The singular support of the inversion map composed with Verdier duality corresponds to i

in G×G.

Proof. The kernel for convolution is the trivial local system supported on the the graph of the
group multiplication.

(31) K∗ = {(h, g, f) | f = hg} ⊂ K ×K ×K
The singular support of K∗ is the conormal bundle of this graph, as a submanifold of T ∗(K×K×K).

On the other hand, to describe m, we note that, using left multiplication, we can identify
T ∗K ∼= K × k∗. In the latter description, the groupoid structure is given by the action groupoid
construction for the coadjoint action of K on k∗. Thus if (g, ξ) ∈ K × k∗ is a morphism, we have
s(g, ξ) = ξ and t(g, ξ) = Ad∗(g)(ξ). The composition m((h, η), (g, ξ)) is defined if and only if
η = Ad∗(g)(ξ), and in that case it equals (hg, ξ). Thus

(32) m ∼= {((h, η), (g, ξ), (f, ζ) | f = hg, η = Ad∗(g)(ξ), ζ = ξ} ⊂ (K × k∗)3

In order to compare the two Lagrangians, we need to trace through the isomorphisms TK ∼= K×k
and T ∗K ∼= K× k∗ given by left multiplication. The isomorphism TK ∼= K× k takes (g,X) ∈ K× k
to (g, Lg(X)) ∈ TK. To compute the tangent space to the graph {(h, g, f) | f = hg} ⊂ K3, we
represent points nearby to h, g, and f by g exp(tX), h exp(tY ), and f exp(tZ) respectively. Then
the relation

(33) f exp(tZ) = h exp(tY )g exp(tX)

can be expanded with respect to t to give

(34) f + tfZ + · · · = hg + t(hY g + hgX) + · · ·
So the relation between the tangent vectors is

(35) fZ = hY g + hgX

multiplying on the left by f−1 = g−1h−1 yields

(36) Z = g−1Y g +X

as the relation that defines the tangent space to the graph. Now suppose that the element (ξ, η, ζ) ∈
(k∗)3 annihilates this space, where ξ pairs with X, η with Y , and ζ with Z. Because vectors of the
form (X,Y, Z) = (Z, 0, Z) are in the space, we must have ζ = −ξ, and because vectors of the form
(X,Y, Z) = (X,−Ad(g)X, 0) are in the space, we must have ξ = Ad(g−1)∗(η), or η = Ad(g)∗(ξ).
Flipping the signs of ξ and η preserves the relation η = Ad(g)∗(ξ) and takes ζ = −ξ to ζ = ξ, and
thus the relations defining the conormal bundle of the graph of multiplication correspond to the
relations defining m.

For the unit object, this is nothing but Ke, where e ∈ K is the identity element of the group.
The singular support is T ∗eK, which consists of the pairs (e, ξ) for ξ ∈ k∗, and indeed these are the
identity morphisms for the groupoid structure.

For inversion, the singular support is the conormal bundle of the graph of the group inversion

(37) {(h, g) | hg = e} ⊂ K ×K
Again writing h exp(tY ) and g exp(tX) for nearby elements, we find

(38) g−1Y g +X = 0

is the relation defining the tangent space, which implies that the cotangent space is defined by the
relation η = Ad∗(g)(ξ). On the other hand, in the groupoid structure on K × k∗, the inverse of
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(g, ξ) as a morphism from ξ to Ad∗(g)(ξ) is simply (g−1,Ad∗(g)(ξ)) as a morphism from Ad∗(g)(ξ)
to ξ. �

In this case, the symplectic leaves are coadjoint orbits, and the action has been studied quite
extensively from the perspective of Fukaya categories, though possibly without mentioning the
word “groupoid.” This action (or more precisely the action on a Hamiltonian G-manifold) is what
appears in the work of Constantin Teleman [72] on 3D gauge theory and mirror symmetry, and it
was exploited to great effect by Jonny Evans and Yankı Lekili [26] to study the question of finding
objects that generate the Fukaya category of a Hamiltonian G-manifold. The action correspondence
is what those authors call the moment Lagrangian.

The case of G = T ∗K has more structure than the other cases, because G is a symplectic
groupoid in two different ways, it is both the coadjoint action groupoid of k and the cotangent
bundle of K. Taking the transpose of the fiberwise addition correspondence gives a correspondence
∆ : G→ G×G. Taking the monoidal structure considered above together with ∆ makes G = T ∗K
into a Hopf algebra in the 2-category Symp, and hence F(G) is a Hopf algebra in A∞cat.

4.5. The case of symplectic fibrations. More general Poisson structures can sometimes be
thought of as “mixtures” of the previous examples. As a specific example, let (F, ωF ) be a symplectic
manifold, and let µ ∈ Symp(F, ωF ) be a symplectic automorphism. Consider the mapping torus

(39) Mµ = R× F/〈τ〉

Where τ is the diffeomorphism τ(t, x) = (t − 1, µ(x)). Let πF = ω−1
F denote the nondegenerate

Poisson tensor on F . Taking the product with the zero Poisson structure on R gives a Poisson
structure on R× F . This descends to a Poisson structure on Mµ be cause τ is a Poisson automor-
phism; call the result πµ. The symplectic leaves of this Poisson structure are precisely the fibers of
M → R/Z, which are symplectomorphic to (F, ωF ).

We can get a symplectic integration of this Poisson structure by combining the previous examples.
First, a symplectic integration of (F, πF ) is (F × F, (−ωF ) × ωF ), and a symplectic integration of
(R, 0) is (T ∗R, ωcan). Their product T ∗R×F ×F is an integration of R×F , and the automorphism
τ lifts to an automorphism τ̃ of the symplectic groupoid structure. Then we have that

(40) Gµ = (T ∗R× F × F )/〈τ̃〉

is a symplectic integration7 of (Mµ, πµ). Observe that there is a map Gµ → T ∗(R/Z).
The Fukaya category of things like Gµ contains some interesting objects. For instance, let φ ∈

Symp(F, ωF ) be another symplectic automorphism. Then the graph Γ(φ) ⊂ F × F is Lagrangian.
One way to extend this to a Lagrangian in Gµ is to place Γ(φ) in fiber of Gµ → T ∗(R/Z) and cross
with a cotangent fiber on T ∗(R/Z). Another way is to try “cross with R/Z”. In order for it to
close up, φ and µ must commute. It other words, it is the centralizer CSymp(F,ωF )(µ) that gives rise
to Lagrangians in Gµ.

For each p ∈ R/Z, we have a symplectic leaf Fp that is symplectomorphic to (F, ω), and F(Gµ)
acts on F(Fp) by endofunctors. Some objects of F(Gµ) act by a nonzero functor only on a single
fiber, while others, such as the ones coming from φ ∈ CSymp(F,ωF )(µ) act by a nonzero functor on
all fibers.

Note also that there is an action of Gµ on the symplectic mapping torus R ×Mµ. The Fukaya
category of a symplectic mapping torus R×Mµ has been studied in the wrapped setting by Kartal
[41, 40], who has shown that it coincides with a categorical mapping torus construction. We expect
that, in general, there is a collection of A∞-functors F(R×Mµ)→ F(Fp) given by intersection with
a fiber, and that the A∞-category F(Gµ) corresponds of A∞-endofunctors of F(R ×Mµ) whose
action respects this extra structure.

7We get the same symplectic manifold by taking the symplectic mapping torus of µ× µ ∈ Symp(F × F ).
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It is perhaps interesting that even this case, which is rather simple from the point of view of
Poisson geometry (the Poisson tensor has constant corank one, the symplectic foliation is a locally
trivial fibration, and there is no variation in the symplectic form over the leaf space), already pushes
us into some of the less-explored territory in the theory of Fukaya categories.

4.6. Other module categories. In addition to the module A∞-categories F(F ) for a symplectic
leaf F , the A∞-category F(G) may have other interesting module categories.

• In the case of G = T ∗M , we may consider twisted cotangent bundle T ∗Mβ. This is con-
structed by taking a closed 2-form β ∈ Ω2

closed(M), and equipping T ∗M with the symplectic
form ωcan + π∗(β), where ωcan is the canonical symplectic form on the cotangent bundle.
The fiberwise addition correspondence is still Lagrangian when considered as a correspon-
dence T ∗M × T ∗Mβ → T ∗Mβ, so the groupoid T ∗M acts on the twisted cotangent bundle
T ∗Mβ.
• In the case of a torus bundle G = T ∗M/Λ∗Z, where M carries an integral affine structure,

we may consider twisted versions as well. These are constructed by taking T ∗Mβ as above,
and dividing by the local Λ∗Z actions, which preserve π∗(β) since it is pulled back from the
base. The resulting manifold Gβ = T ∗Mβ/Λ

∗
Z still admits a Lagrangian torus fibration but

does not generally admit a Lagrangian section unless β is exact. According to Abouzaid
[3, 6], if π2(M) = 0, then F(G) is embeds as an A∞-category into the category of coherent
analytic sheaves on a rigid analytic mirror variety, and F(Gβ) embeds into a category of
twisted sheaves, twisted by a Gerbe constructed from β. The action of F(G) on F(Gβ) thus
corresponds to action of untwisted sheaves on twisted sheaves by tensor product.
• In the case of a mapping torus Mµ with fiber F , the groupoid Gµ acts on the symplectic

mapping torus R ×Mµ. The action of F(Gµ) on F(R ×Mµ) is a parameterized version of

the action of F(F × F ) on F(F ).
• In the case of G = T ∗K, K a compact Lie group, one can consider a symplectic manifold
X with Hamiltonian K-action. Such actions have been studied from the Fukaya categorical
point of view by Teleman [72] and Evans-Lekili [26].

4.7. Singular torus fibrations. We would also like to mention one other phenomenon which
seems to fit at this point in our discussion. The torus bundles G = T ∗M/Λ∗Z we have considered
so far are nonsingular in the sense that the map π : T ∗M/Λ∗Z → M is a submersion. However, it
is well-known that in almost all instances of mirror symmetry this condition cannot be satisfied;
the Lagrangian torus fibers necessarily degenerate to singular fibers. Let π : X → M be such a
Lagrangian torus fibration with singularities. Then there is no reason for X to admit a groupoid
structure. If we let ∆ ⊂M be the discriminant locus (critical values of π), then π−1(M \∆) consists
of nonsingular torus fibers, and it is a symplectic groupoid with M \∆ as its manifold of objects.
On the other hand, sitting inside X is the locus where π is a submersion:

(41) Xgp = {x | Dπ(TxX) = Tπ(x)M} ⊂ X.

Clearly Xgp contains all nonsingular fibers, so π−1(M \∆) ⊂ Xgp, but it also includes some parts
of the singular fibers. For instance, when dimX = 4, and the singular fiber is a nodal torus, Xgp

contains the nodal torus minus the node.
We expect that the symplectic groupoid structure of π−1(M\∆)→M\∆ extends to a symplectic

groupoid structure on Xgp →M . An important special case where this can be made clear is when
the original fibration X →M comes from algebraic geometry. Namely, suppose that π : X →M is
a proper algebraic completely integrable system. Then Xgp is the associated abelian group scheme
over M . The notion of “abelian group scheme over M” is essentially the algebraic analogue of
“abelian groupoid with objects M”.
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We remark that the lack of properness ofXgp →M indicates that care is required in the definition
of F(Xgp). Nevertheless, the groupoid Xgp acts on X, so it is likely that F(Xgp) admits a monoidal
action on F(X). It seems likely that F(Xgp) and F(X) are equivalent categories, allowing us to
transfer the monoidal structure to F(X).

Remark 4.7.1. When X has complex dimension two (real dimension 4), the theory of algebraic
completely integrable systems is essentially Kodaira’s theory of elliptic fibrations. See Table I at
[43, p. 604] for the group structure associated to each of the singular fibers in Kodaira’s classification.

4.8. Coisotropic submanifolds as objects of a Fukaya category. So far, we have been using
symplectic groupoids (G,M) as a source of monoidal Fukaya categories, but we have not drawn
a significant connection to the Poisson geometry of the induced Poisson structure on manifold of
objects M . One way to draw such a connection is to use the idea that a coisotropic submanifold
of M can often be promoted to a Lagrangian submanifold of G. An Lagrangian integration of a
coisotropic submanifold C ⊆M is a Lagrangian subgroupoid L ⊂ G whose set of objects is C.

For example, in the case G = T ∗M , and π = 0, any submanifold C ⊆ M is coisotropic. Then
the conormal bundle T ∗CM is a Lagrangian subgroupoid integrating C.

As in the case of integrations of a Poisson manifold, a smooth embedded Lagrangian subgroupoid
integrating a coisotropic submanifold need not exist, but if it does, it gives us a way to treat a
coisotropic submanifold as an object in a Fukaya A∞-category F(G). In terms of the monoidal
structure, the condition that L be a subgroupoid translates into a relation like L⊗L ∼= L, meaning
that L is idempotent for the monoidal structure.

This idea leads to a proposal for a Floer cohomology group associated to a pair C1, C2 of
coisotropic submanifolds in a Poisson manifold M . Namely, find a symplectic integration G of
M and Lagrangian subgroupoids Li integrating Ci (i = 1, 2), and take the Floer cohomology
HF ∗G(L1, L2). Alternatively, using the duality, one could express this group as HF ∗(O, L2⊗D(L1)).
It is in this form that M. Gualtieri [38] has proposed to use the monoidal structure of the Fukaya
category of a symplectic groupoid as an avenue to define the Floer cohomology of more general
branes in Poisson and generalized complex geometry.

4.9. Speculations on family Floer theory and the “orbit method”. While F(G) acts on
any symplectic leaf in M , it would be more satisfying to understand how the action on the various
leaves fits together. At least in the cases of Sections 4.1, 4.2, and 4.5, it is possible to interpret the
symplectic groupoid as endomorphisms of a sheaf of categories. Namely, consider the leaf space of
the symplectic foliation on (M,π). Taking the Fukaya categories of the leaves produces a sheaf of
categories over the leaf space, and there is a functor from F(G) to endomorphisms of this sheaf (at
some level, a collection of endofunctors of the stalks). An interpretation as endomorphisms of an
object gives another reason that the category is monoidal: endomorphisms can be composed.

Another perspective, suggested to me by David Ben-Zvi, is that the idea of attaching module
categories to symplectic leaves is reminiscent of Kirillov’s orbit method (corresponding to the case
T ∗K). It would be interesting to understand if and in what sense the symplectic leaves really give
a complete set of irreducible module categories for the monoidal A∞-category F(G).

One way to get a hint as to how this might work is to compare with family Floer theory [29, 3, 6]
and the Nadler-Zaslow correspondence [61, 60] corresponding to the cases G = T ∗M/Λ∗Z and
G = T ∗M respectively, which from this perspective are instances of the orbit method, the orbits
being simply the points of M . In the case G = T ∗M , objects of F(T ∗M) are transformed directly
into sheaves on the orbit space M , whereas in the case G = T ∗M , the functor lands in a category
of sheaves on a rigid analytic space living over M . This indicates that the structure of the isotropy
group of the orbit plays a significant role.
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5. Commutativity

There is a connection between symplectic groupoid structures and commutativity. In the con-
text of homological mirror symmetry, symplectic homology SH∗(G) is known to be the Hochschild
homology of the wrapped Fukaya A∞-category F(G) for wide classes of symplectic manifolds, in-
cluding non-degenerate Liouville manifolds [35]. In general, F(G) is an A∞-category, or what is
known after D. Orlov as a “noncommutative variety.” The Hochschild homology of a noncommuta-
tive variety has no reason to carry a natural ring structure, while that of a commutative variety does
have a ring structure, corresponding under Hochschild-Kostant-Rosenberg to the wedge product of
differential forms.

In more elementary terms, we posit that there is a tension between the following two points:

• Given an object L of the Fukaya category, the endomorphism algebra End∗(L) = HF ∗(L,L)
is an A∞-algebra. The reason why it carries is an A∞ structure is because operations
on Floer cohomologies are governed by the operads formed by moduli spaces of marked
Riemann surfaces: the operad tells you what operations and relations you are supposed to
have, then you go construct them. Discs with marked boundary points and a distinguished
output form an A∞ operad, and this operad has no commutativity relation.
• In many cases where End∗(L) can be calculated, it turns out to be graded commutative.

It is also true that in many cases End∗(L) turns out to be strictly noncommutative. What
accounts for this?

In fact, the known theory of monoidal structures on categories provides neat, essentially formal
arguments that show that certain endomorphism algebras are commutative. Combining this with
our previous observations, we hold that the presence of a symplectic groupoid structure is the
natural symplectic-geometric reason for commutative Floer cohomology rings.

5.1. Endomorphisms of the unit object. Let us suppose that (G,ω) is a symplectic groupoid
and that there is a corresponding monoidal structure on F(G) (for some version of the Fukaya
category; the following argument is rather independent of the details).

Theorem 5.1.1. Let O be the unit object in the monoidal A∞-category F(G). Then the degree-zero
Floer cohomology endomorphism algebra, End(O) = HF 0(O,O), is commutative.

Proof. This is a version of the well-known Eckmann-Hilton argument, which we reproduce here
following [25, Prop. 2.2.10]. Part of the unitality of the monoidal structure is the existence of an
isomorphism u : O⊗ O ∼= O. Conjugating by u induces an isomorphism

(42) Ψ : End(O⊗ O) ∼= End(O)

Letting 1O denote the identity morphism of O, we have the further unitality property Ψ(1O ⊗ a) =
a = Ψ(a⊗ 1O). Now consider for a, b ∈ End(O):

ab = Ψ(a⊗ 1O)Ψ(1O ⊗ b) unitality property

= Ψ((a⊗ 1O)(1O ⊗ b)) Ψ is a ring isomorphism

= Ψ(a⊗ b) functoriality of ⊗
= Ψ((1O ⊗ b)(a⊗ 1O)) functoriality of ⊗
= Ψ(1O ⊗ b)Ψ(a⊗ 1O) Ψ is a ring isomorphism

= ba unitality property

�

There is a similar argument that applies to the full Floer cohomology endomorphism alge-
bra HF ∗(O,O), but it contains signs. Indeed, HF i(O,O) is not part of End(O) but rather is
Hom(O,O[i]). We can treat HF ∗(O,O) as an instance of the homogeneous coordinate ring con-
struction described in the next section.
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5.2. Homogeneous coordinate rings. Now let L be an invertible object in F(G). In our case,
this condition can be written as L⊗D(L) ∼= O. For one thing, this condition implies that tensoring
with L is an autoequivalence. Therefore End(L) ∼= End(O), and hence End(L) is also commutative.

Another thing we can do is form what we shall call the homogeneous coordinate ring

(43) R =
⊕
k≥0

Hom(O, L⊗k)

There are several ways to make this space into a ring. One product is defined as

(44) Hom(O, L⊗m)⊗Hom(O, L⊗n)→ Hom(L⊗n, L⊗(m+n))⊗Hom(O, L⊗n)→ Hom(O, L⊗(m+n))

where the first map is applying the equivalence L⊗n ⊗− to the first factor, and the second map is
composition of morphisms. Another product is defined by

(45) Hom(O, L⊗m)⊗Hom(O, L⊗n)→ Hom(O⊗ O, L⊗m ⊗ L⊗n)→ Hom(O, L⊗(m+n))

Where the first map is tensor product of morphisms, and the second map uses isomorphisms
O⊗ O ∼= O and L⊗n ⊗ L⊗m ∼= L⊗(m+n).

One can run arguments similar in spirit to the Eckmann-Hilton argument in this case, but it
is not quite as simple as the case of the unit object. For one thing, it is critical that F(G) be
not just a monoidal category but a symmetric monoidal category, meaning that for every pair of
objects X and Y there is a chosen isomorphism tX,Y : X⊗Y → Y ⊗X satisfying several coherence
properties. Symmetric monoidal structures correspond to abelian symplectic groupoids, where the
automorphism of G×G that swaps the factors commutes with the composition; this class includes
the cotangent bundle G = T ∗M and torus bundles G = T ∗M/Λ∗Z. In precisely this context, Dugger

[23] has developed a theory8 for showing that rings such as our R above are commutative up to
sign. A translation of his result into our context is the following.

Proposition 5.2.1 (From Proposition 1.2 of [23]). Let C be a symmetric monoidal category with
unit object O, and let X1, . . . , Xn be a collection of invertible objects in C . For a ∈ Zn, define

(46) Xa = X⊗a11 ⊗ · · · ⊗X⊗ann ,

and define Ra = HomC (O, Xa). Then

(1) R∗ =
⊕

a∈Zn Ra is a Zn-graded ring,

(2) There exist elements τ1, . . . , τn in End(O) satisfying τ2
i = 1 such that for f ∈ Ra and g ∈ Rb,

(47) fg =
[
τa1b11 · · · τanbnn

]
gf.

Thus commutativity holds up to the action of certain elements τi ∈ End(O) attached to the
invertible objects Xi. These elements are organized as a homomorphism τ : Pic(C ) → Aut(O)2,
where Pic(C ) is the group of isomorphism classes of invertible objects in C , and Aut(O)2 is the 2-
torsion subgroup of Aut(O). It is useful to note that this means that τ(X⊗2) = 1 for any invertible
object X. Thus, if we replace every object Xi in the proposition above by X⊗2

i , we find that
commutativity holds in the strict sense.

It is interesting to remark that, in several places in the Floer theory literature where commuta-
tivity of a ring such as R =

⊕
k≥0HF

0(O, L⊗k) has been observed, one finds for geometric reasons

that there is a basis of R (consisting of intersection points of O and L⊗k) such that, if f and g
are basis elements, then fg = ±gf , where the ± sign seems as if it could depend in an arbitrary
way on the chosen basis elements f and g, not just on their homogeneous degrees. One must
then check these signs carefully. What Proposition 5.2.1 shows is that, when the Fukaya category
carries a symmetric monoidal structure, these signs can only depend on the choice of the object

8I believe that similar ideas are well-known to experts in the theory of symmetric monoidal categories, but Dugger’s
article is the most complete treatment I could find.
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L. Moreover, by replacing L by L⊗2, one can guarantee that the signs are all trivial. In a sense,
this simply pushes the problem into checking that the coherences required of a symmetric monoidal
category do indeed hold, but there is a good reason for that to be the case when G is an abelian
symplectic groupoid.

5.3. Higher endomorphisms of the unit object. As mentioned above, an instance of the the
homogeneous coordinate ring construction is the sum of morphisms from O to all shifts of O, which
we denote End∗(O):

(48) End∗(O) =
⊕
i∈Z

Hom(O,O[i]) =
⊕
i∈Z

HF i(O,O) = HF ∗(O,O)

This is because tensoring with O[1] is isomorphic to the shift functor, and so O[i]⊗O[j] ∼= O[i+ j].
Just as End(O) is commutative even when the monoidal structure is not symmetric, one can show
that End∗(O) is graded commutative in that case. This relies on the fact that left and right tensor
product with O[1] are both isomorphic to the shift functor, meaning that O[1] can be made into an
object of the Drinfeld center of the monoidal category.

We can also remark on the chain-level structure one expects on CF ∗(O,O), the cochain complex
that computes HF ∗(O,O). Generally speaking, CF ∗(O,O) has the structure of an A∞-algebra, and
we have seen that its cohomology is graded commutative. Furthermore, it should carry a bracket of
degree −1 making it into an E2-algebra. The construction of the bracket comes from attempting to
lift the proof of commutativity (see section 5.1 above) to the chain level. First, left the isomorphism
Ψ to a quasi-isomorphism ψ : CF ∗(O⊗O,O⊗O)→ CF ∗(O,O). Define the four bilinear operations:

(49) m1(a, b) = ab, m2(a, b) = ψ(a⊗ b), m3(a, b) = ba, m4(a, b) = ψ(b⊗ a).

The argument from section 5.1 shows that all four of these operations induce the same operation
on cohomology. By analyzing the argument further, one sees that it leads to a sequence of chain
homotopies

(50) m1 ' m2 ' m3 ' m4 ' m1,

meaning that there are degree −1 operators P12, P23, P24, P41 such that dPij +Pijd = mj−mi. The
sum P = P12 +P23 +P34 +P41 then satisfies dP +Pd = 0, so it is a chain map of degree −1. This
P is the bracket in the E2-algebra structure.

The full chain-level E2-algebra structure contains many more operations than just P . Fortunately
we have the following theorem stating that they are all determined up to coherent homotopy by
the presentation of O as the unit object in a monoidal A∞-category.

Theorem 5.3.1 (Deligne conjecture, cf. [11] Corollary 4.2). Let A be a monoidal A∞-category (=
⊗-monoid object in A∞cat), let O be the unit object of A, and let End∗(O) denote the endomorphism
A∞-algebra of O. Then End∗(O) carries the structure of an E2-algebra.

Proof. The monoidal structure on A and the isomorphism u : O ⊗ O → O make End∗(O) into a
⊗-monoid object in the category of A∞-algebras (a monoidal A∞-category with essentially one
object). In other words, End∗(O) is an E1-algebra in the category of E1-algebras. By Lurie’s
version of the Dunn additivity theorem9 [53, Theorem 5.1.2.2], it therefore carries the structure of
an E2-algebra. �

Remark 5.3.2. The original Deligne conjecture corresponds to the case where A is an associative
algebra, A = A–mod–A and O = A is the diagonal bimodule. There are many proofs of this
conjecture available. The generalization of the Deligne conjecture to monoidal unit objects has also
been studied by several authors, including Kock-Toën [42] and Shoikhet [68].

9I learned this theorem from David Ben-Zvi.
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Remark 5.3.3. Bottman has shown that there is a connection between 2-associahedra and the 2-
dimensional Fulton-MacPherson operad [15]. This suggests a way to obtain an E2-algebra from an
(A∞, 2)-algebra [15, Section 1.5].

It is also interesting to note that, when the Poisson manifold (M,π) underlying the symplec-
tic groupoid G is compact, the A∞-algebra CF ∗(O,O) is a deformation of the cochain algebra
C∗(M). Thus we find that the Floer theory of a symplectic groupoid integrating (M,π) furnishes
a deformation of C∗(M) as an E2-algebra.

5.4. Cases of commutativity. Now we consider several cases where commutativity can be ex-
plained by the preceding arguments.

5.4.1. G = T ∗M . The unit object the zero section O = T ∗MM . We have

(51) End∗(O) ∼= H∗(M)

with the cup product, which is indeed graded commutative. This calculation is due to Fukaya-Oh
[31].

5.4.2. M = k∗, G = T ∗K. The unit object is the cotangent fiber at the identity O = T ∗eK. As an
object of the wrapped Fukaya category

(52) End∗(T ∗eK) ∼= H∗(ΩK)

where the product is the Pontryagin product on the based loop space. This product is commutative
because ΩK ' Ω2BK has the homotopy type of the double loop space of the classifying space
BK. This fact, which generalizes the fact that the fundamental group of a topological group is
abelian, is in some sense the source of the Eckmann-Hilton argument historically, and the problem
of recognizing double loop spaces led to the introduction of the E2-operad [59].

5.4.3. G = M ×M . The unit object is the diagonal ∆ ⊂M ×M . When M is compact we have

(53) End∗(∆) ∼= QH∗(M)

The right-hand side is commutative for operadic reasons (it is an algebra over the hypercommutative
operad H∗(M0,n+1) [55, Theorem III.1.5, Proposition IV.1.8.1]), but the left-hand side, seen merely
as a Floer cohomology ring, is not manifestly commutative. Now we see that it is the groupoid
structure on M ×M that is responsible for the left-hand side being commutative.

Similarly, when M is Weinstein, and we consider the wrapped Fukaya category, the theory
developed by Ganatra [35] shows that we have End∗(∆) ∼= SH∗(M), and SH∗(M) is known to be
commutative because it carries the structure of a Batalin-Vilkovisky algebra.

If we take a symplectic automorphism φ : M →M , there is a corresponding invertible object in
F(G), namely the graph Γ(φ) of φ. Its k-th monoidal power is Γ(φk), and HF (∆,Γ(φk)) is HF (φk),
the fixed point Floer cohomology. It is possible [67] to define a variety of bilinear operations on the
space

(54) R =
⊕
k≥0

HF (φk),

but in this case, the conditions of Proposition 5.2.1 are not satisfied, and these products are not
necessarily commutative in any sense: for one thing, the monoidal structure is not symmetric. Even
restricting to the monoidal subcategory generated by Γ(φ), one finds that the desired coherences
cannot hold. This is related to the fact that HF (φk) carries an action of Z/k, where the generator
sends x 7→ φ(x) for x a fixed point of φk. This action appears in the monoidal theory as the action
of the conjugation functor C 7→ Γ(φ)⊗ C ⊗ Γ(φ−1) on the space HF (∆,Γ(φk)). The nontriviality
of the conjugation functor (even on the monoidal subcategory generated by Γ(φ)) measures the
difference between left and right tensoring with Γ(φ), and the comparison of these two actions is
crucial for the proof of Proposition 5.2.1.
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5.4.4. Torus fibration. In the case G = T ∗M/Λ∗Z, the unit object is the zero section. When M is
noncompact, one can obtain interesting rings as End(O). For instance, when M = Rn, we have
G ∼= T ∗Tn and O ∼= T ∗p T

n. If we take the wrapped Fukaya category then End(O) ∼= H0(ΩTn) by
Abouzaid [5]. This is the ring of Laurent polynomials in n variables, and it is commutative.

The invertible objects are the ones supported on Lagrangian sections of the fibration G → M .
Taking such a section L, we can form the homogeneous coordinate ring

(55) R =
⊕
k≥0

HF 0(O, L⊗k)

which is then commutative. As the name suggests, when the section L corresponds to an ample
line bundle, this ring is actually supposed to be the homogeneous coordinate ring of the mirror
variety X with respect to the projective embedding determined by L.

We expect that this analysis extends to the case of singular torus fibrations X →M by restricting
to the groupoid part Xgp.

Example 5.4.1. As a specific application, consider the following problem posed to me by Paolo
Ghiggini. Let T ⊂ S3 be the standard Legendrian embedding of the trefoil knot in the standard
contact S3. There is a differential graded algebra associated to any Legendrian link Λ ⊂ S3, the
Chekanov-Eliashberg algebra LCA∗(Λ). In general, the underlying associative algebra of LCA∗(Λ)
is a free associative algebra generated by the Reeb chords of Λ, so it is non-commutative. On the
other hand, for the case of Λ = T , the trefoil, the cohomology algebra H∗(LCA∗(T ), ∂) turns out
to be commutative; to the author’s knowledge this was first observed by Y. Lekili and appears in
the work of Ekholm-Lekili [24, Section 6.1.5].

We can now explain this as follows. First, it is understood that the complex (LCA∗(T ), ∂)
calculates the wrapped Floer cohomology HW ∗(L,L) of the cocore Lagrangian L in the manifold
X obtained by attaching a Weinstein 2-handle to the symplectic B4 along T ⊂ S3 = ∂B4. Second,
there is another presentation of the Weinstein manifold X, which is as the manifold obtained from
the cotangent disc bundle D∗T 2 of the 2-torus by handle attachment along the conormal lifts
of the a and b curves on T 2. Third, there is yet another presentation of X which is as a singular
Lagrangian torus fibration over D2 with two singular fibers; each singular fiber is a nodal torus, and
the vanishing cycles are the a and b curves from the previous description. In this last description,
the cocore L becomes a section of the Lagrangian torus fibration. If we set up the groupoid structure
on Xgp so that this L becomes the zero-section, then L becomes the unit object in the monoidal
structure on F(X), then H∗(LCA∗(T ), ∂) = HW ∗(L,L) = End∗(L) is the endomorphism algebra
of the unit object, and commutativity follows from the Eckmann-Hilton argument.

Another remark is that, by regarding L has Lagrangian section of the torus fibration and using a
wrapping Hamiltonian pulled back from the base of the torus fibration, it is possible to construct a
complex computing HW ∗(L,L) that is concentrated in degree zero, implying that H∗(LCA∗(T ), ∂)
is concentrated in degree zero as well. This is a non-trivial observation since LCA∗(T ) has many
elements of non-zero degree.

5.4.5. Symplectic fibration. Let G = Gµ be the symplectic groupoid associated to µ ∈ Symp(F, ωF ),

where F is compact. Recall that Gµ is an F × F fibration over T ∗S1. The unit object O is the

fibration over S1 ⊂ T ∗S1 whose fiber is the diagonal ∆F ⊂ F × F .
The classical cohomology of O may be computed using the Serre spectral sequence for the fibra-

tion F → O→ S1,

(56) H∗(O) = ker(µ∗ − I)⊕ coker(µ∗ − I)[−1],

where µ∗ : H∗(F )→ H∗(F ) is the action of monodromy of the fibration on the cohomology of the
fiber. Since µ ∈ Symp(F, ωF ), µ∗ is an automorphism of the quantum cohomology algebra QH∗(F ).
Then QH∗(F )µ := ker(µ∗ − I) is a subalgebra, and QH∗(F )µ := coker(µ∗ − I) is a module for
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QH∗(F )µ, so it is natural to expect that (56) holds at the quantum level, giving

(57) HF ∗(O,O) = QH∗(F )µ ⊕QH∗(F )µ[−1].

The point we wish to make is that, even without calculating what this ring is, we know a priori
that it is commutative, simply because it is the unit object in a symplectic groupoid.

Appendix A. Monoidal categories and monoids in higher category theory

In this section we will review several notions of monoidal category and monoid object, both in
ordinary category theory, and in the theory of higher categories. Most of this material may be found
in standard references on higher category theory, and we may not always cite the original references.
Our presentation follows Etingof et al. [25], Lurie [50, 52, 53], and Gaitsgory-Rozenblyum [34]. The
websites nLab (ncatlab.org) and Kerodon (kerodon.net) were also consulted.

The symplectically inclined reader will notice the absence of operads in our discussion. Instead
we use the simplex category and its variants to formulate associativity and unitality properties.
This is the primary method used in the literature on higher categories.

The goal of this Appendix is to arrive at the definition of monoid object that we use in the
paper: see Definition A.5.5 and its reinterpretation in Proposition A.5.6. This definition is a
higher-categorical variation of a notion of homotopy monoid object introduced by Leinster [45].

A.1. The simplex category and simplicial objects. The simplex category ∆ is the category
whose objects are the finite nonempty ordinals [n] = {0 < 1 < · · · < n} and whose morphisms are
monotonic functions. In some situations, we shall use the alternative notation n = [n − 1]. The
augmented simplex category ∆a also includes the empty set 0 = [−1] = ∅. (In von Neumann’s
notation for the ordinals, the ordinal n is the object that we write as n = [n − 1]. The notation
n emphasizes the cardinality of the set, while the notation [n] emphasizes the dimension of the
simplex with this vertex set.)

The category ∆ may be presented in terms of generators and relations. Let δi : [n− 1]→ [n] be
the unique monotonic function whose image does not contain i, and let σi : [n + 1] → [n] be the
unique monotonic function such that i ∈ [n] has two distinct preimages; these functions are defined
for each pair (n, i) such that 0 ≤ i ≤ n. The maps δi and σi generate the category ∆, subject to
the following relations [49, §1.1.1, taking the opposite]:

(1) For n ≥ 2 and 0 ≤ i < j ≤ n, the relation δj ◦ δi = δi ◦ δj−1,
(2) For 0 ≤ i ≤ j ≤ n, the relation σj ◦ σi = σi ◦ σj+1,
(3) For 0 ≤ i, j ≤ n, the relation

σj ◦ δj =


δi ◦ σj−1, if i < j,

id, if i = j or i = j + 1,

δi−1 ◦ σj , if i > j + 1.

We shall also consider the opposite category ∆op. We use the notations di : [n] → [n − 1] and
si : [n]→ [n+ 1], for δi and σi regarded as morphisms in the opposite category. The category ∆op

is therefore generated by di and si subject to the opposites of the relations written above. The map
di is called a face map, si is called a degeneracy map, δi is called a coface map, and σi is called a
codegeneracy map.

For any pair {i, i + 1} ⊂ [n] of consecutive elements, there is a unique monotonic function
εi,i+1 : [1]→ [n] whose image is {i, i+ 1}. The opposite ei,i+1 : [n]→ [1] is a morphism in ∆op that
we call a principal edge (of the n-simplex).

A useful variation is the category of intervals. This is the subcategory ∆int ⊂∆ with the same
objects, but whose morphisms are required to take the minimum element to the minimum element,
and the maximum element to the maximum element. A presentation for ∆int is obtained from the
presentation of ∆ by throwing away the first and last coface maps δ0, δn : [n − 1] → [n]. There
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is a duality between face and degeneracy maps that is evident from the relations, and which is
expressed by the following isomorphism of categories.10

Proposition A.1.1 ([1] article “simplex category”). There is a functor F : ∆a →∆op
int defined on

objects and generating morphisms by

F ([n]) = [n+ 1], F (δi) = si, F (σi) = di+1,

and F is an isomorphism of categories ∆a
∼= ∆op

int between the augmented simplex category and the
opposite category of intervals.

Let C be an ordinary category. A simplicial object in C is a functor ∆op → C, a cosimplicial
object is a functor ∆→ C, an augmented simplicial object is a functor ∆op

a → C, and an augmented
cosimplicial object is a functor ∆a → C. According to Proposition A.1.1, a functor ∆op

int → C

is essentially the same thing as an augmented cosimplicial object, and a functor ∆int → C is
essentially an augmented simplicial object. In particular, any simplicial object gives rise to an
augmented cosimplicial object by restricting along the embedding ∆a

∼= ∆op
int →∆op.

A.2. Nerves of monoids and categories. A fundamental observation in algebra and its higher-
categorical generalizations is that the opposite simplex category ∆op may be used to formulate
associativity and unitality axioms. Because the concepts “monoid” and “category” are defined by
such axioms, they may be recast in the form of simplicial objects satisfying certain extra conditions.

Remark A.2.1. The use of ∆op to formulate associativity axioms is different from the approach
using the Stasheff associahedra that is common in work on Floer theory. The latter approach has
the benefit that it can be generalized to other operads, so that one can formulate other kinds of
algebraic axioms, such as commutative laws and Jacobi identities. On the other hand, the approach
using ∆op involves much simpler combinatorics and is fundamental to most of the literature on
higher categories.

We begin by recalling that a monoid (in the category of sets) consists of a set M , a map
◦ : M ×M → M , and an element e ∈ M such that a ◦ (b ◦ c) = (a ◦ b) ◦ c and e ◦ a = a = a ◦ e
for all a, b, c ∈M . From these data we shall construct a simplicial set BM : ∆op → Set, known as
classifying space of M [50, Example 1.2.11].

Concretely, BM([n]) = Mn is the n-fold Cartesian product of the set M , the degeneracy maps
si : Mn−1 → Mn insert e in the i-th factor, the first face map d0 : Mn → Mn−1 forgets the
first factor, the last face map dn : Mn → Mn−1 forgets the last factor, and the other face maps
di : Mn → Mn−1 multiply two consecutive elements using ◦. The fact that these maps satisfy the
relations in ∆op encodes the associativity and unital axioms of M . For instance the relation

d1 ◦ d1 = d1 ◦ d2 : M3 →M

is the associative law.
Next, observe that the principal edges define maps ei,i+1 : BM([n])→ BM([1]), and taking the

product of these maps over all i gives a map

n−1∏
i=0

ei,i+1 : BM([n])→ BM([1])n

and this map is nothing but the identity map Mn →Mn.

Proposition A.2.2 ([50] Example 1.2.11). Let X : ∆op → Set be a simplicial set, and suppose
that, for every n ≥ 0, the map induced by the principal edges

n−1∏
i=0

ei,i+1 : X([n])→ X([1])n

10I learned this proposition from Ezra Getzler.
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is bijective. Then there is a monoid (M, ◦, e), unique up to isomorphism, such that X is isomorphic
to BM .

The key is to see how the multiplication and the unit are recovered from the simplicial structure.
The hypothesis of the proposition implies that X([0]) is a one-point set, and the unit is image of this
point under the degeneracy map s0 : X([0])→ X([1]). There is also a bijection X([2])→ X([1])2;
taking the inverse of this bijection followed by d1 : X([2])→ X([1]) recovers the multiplication.

Now we pass from monoids to (small) categories. Let us keep in mind that a category is a “monoid
with many objects.” Let C be a small category with object set C. We introduce another variant
of ∆, the C-colored simplex category ∆C . An object of ∆C consists of a pair ([n], f : [n] → C)
whose first coordinate is an object of ∆ and whose second coordinate is a coloring of the elements
of [n] by elements of C. The morphisms in ∆C are monotonic functions that are compatible with
the colorings in the sense that p : [n]→ [m] gives rise to a morphism from ([n], f ◦ p : [n]→ C) to
([m], f : [m]→ C). We write [c0, c1, . . . , cn] for the object ([n], f) where f(i) = ci. The idea is that
∆op
C controls the associativity and unitality of any category whose object set is identified with C.
Recall that C is a category with object set C. Define the C-colored nerve of C to be the functor

NC(C) : ∆op
C → Set such that

• NC(C)([c]) is a final object (a one-point set that we could take to be {∅} for specificity).
• NC(C)([c0, c1, . . . , cn]) is the set of sequences of composable morphisms c0 → c1 → · · · → cn;

in particular NC(C)([c0, c1]) = HomC(c0, c1).
• The degeneracy maps si : [c0, . . . , ci, . . . , cn] → [c0, . . . , ci, ci, . . . , cn] have the effect of in-

serting the identity morphism in the i-th spot.
• For 0 < i < n, The face maps di : [c0, . . . , ci−1, ci, ci+1, . . . , cn] → [c0, . . . , ci−1, ci+1, . . . , cn]

are given by composition of morphisms in C at the object ci. The face maps d0 and dn are
projections.

There is an analogue of Proposition A.2.2 in this context:

Proposition A.2.3 (cf. [52] Section 2). Let C be a set and let X : ∆op
C → Set be a functor such

that

(1) for each c, X([c]) is a one-point set,
(2) for each [c0, . . . , cn], the map induced by the principal edges in ∆op

C

X([c0, c2, . . . , cn])→ X([c0, c1])×X([c1, c2])× · · · ×X([cn−1, cn])

is bijective.

Then there is a category C with object set C, unique up to isomorphism, such that X is isomorphic
to NC(C).

We must also mention the (ordinary) nerve N(C) of C, which is given by the same construction
but forgetting the colorings. Then N(C)([0]) = C is the set of objects, and N(C)([n]) is the set
of all composable sequences of morphisms between any pair of objects. The purpose of using the
C-colored version is that it lends itself slightly better to certain higher-categorical generalizations
(the notion of Segal categories to be discussed below).

An obvious but important property of the nerve is that it may be used to turn any ordinary
category into an ∞-category; for instance N(∆op) is an ∞-category that plays the role of ∆op in
∞-category theory. Thus a simplicial object in an ∞-category C is a map X : N(∆op)→ C.

A.3. Ordinary monoidal categories and monoid objects in them. Proposition A.2.2 gives
us a way to define a monoid object in any category.



POISSON GEOMETRY AND MONOIDAL FUKAYA CATEGORIES 31

Definition A.3.1. Let C be a category that has finite products. A monoid object of C is a simplicial
object X : ∆op → C such that, for every n ≥ 0, the map induced by the principal edges

n−1∏
i=0

ei,i+1 : X([n])→ X([1])n

is an isomorphism in C between the object X([n]) and the n-fold Cartesian product of the object
X([1]).

Given a monoid object in the sense just defined, we get an associative multiplication X([1])2 →
X([1]) by taking the inverse of the ismorphism X([2])→ X([1])2 followed by d1 : X([2])→ X([1]).
We get a unit by taking the degeneracy s0 : X([0]) → X([1]), noting that X([0]) is necessarily a
terminal object according to the definition.

We now observe that the definition of monoid object just given is restrictive in a specific sense,
namely that it makes reference to the categorical Cartesian product. The Cartesian product is an
instance of a monoidal structure on C, and we may wish to consider other monoidal structures.
For instance, consider the category VectK of ordinary (not DG) vector spaces over a field K. We
would like to say that an associative K-algebra A is the same thing as a monoid object in VectK.
But the multiplication map A × A → A is not linear but bilinear, and so it is not a morphism in
VectK. What we must do instead is consider the multiplication as a map A⊗K A→ A, and this is
a morphism in VectK. Thus we must consider ⊗K as the ambient monoidal structure on VectK in
order for this definition to make sense.

We now recall the definition of a monoidal structure on an ordinary category.

Definition A.3.2 ([25] Definition 2.1.1). A monoidal category is a tuple (C,⊗, a, 1C, ι), where C is
a category, ⊗ : C×C→ C is a bifunctor, 1C is an object of C, a is a natural isomorphism of functors
C3 → C,

aX,Y,Z : (X ⊗ Y )⊗ Z → X ⊗ (Y ⊗ Z),

called the associativity constraint, and ι : 1C⊗ 1C → 1C is an isomorphism. These data are required
to satisfy the unit axiom that X 7→ 1C ⊗X and X 7→ X ⊗ 1C are autoequivalences of C, and also
Mac Lane’s pentagon axiom.

The associativity constraint aX,Y,Z witnesses that the monoidal operation is associative up to
isomorphism, and Mac Lane’s pentagon axiom is the statement that this associativity is coherent
when considering four objects. The axiom may be written as an equation as

(58) aW,X,Y⊗Z ◦ aW⊗X,Y,Z = (idW ⊗ aX,Y,Z)⊗ aW,X⊗Y,Z ◦ (aW,X,Y ⊗ idZ)

where these morphisms relate the five ways of inserting parentheses into the expression W ⊗X ⊗
Y ⊗ Z.

Remark A.3.3. The reader who is familiar with A∞-algebras will note that the definition of a
monoidal category has some of the same flavor. The associativity constraint a corresponds to the
operation m3, and the pentagon appearing in the pentagon axiom is an instance of a Stasheff
associahedron.

We shall also need the concept of a monoidal functor.

Definition A.3.4 ([25] Definition 2.4.1). Let (C1,⊗1) and (C2,⊗2) be monoidal categories. A
monoidal functor consists of a functor F : C1 → C2 and a natural isomorphism of functors C1×C1 →
C2,

JX,Y : F (X)⊗2 F (Y )→ F (X ⊗1 Y ).

The natural isomorphism J must satisfy a coherence condition with respect to the six different
functors C3

1 → C2 that may be constructed from ⊗1,⊗2, and F : this condition is the commutativity
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of the diagram

(59) (F (X)⊗2 F (Y ))⊗2 F (Z)
aF (X),F (Y ),F (Z)//

JX,Y ⊗1F (Z)

��

F (X)⊗2 (F (Y )⊗2 F (Z))

1F (X)⊗JY,Z
��

F (X ⊗1 Y )⊗2 F (Z)

JX⊗1Y,Z

��

F (X)⊗2 F (Y ⊗1 Z)

JX,Y⊗1Z

��
F ((X ⊗1 Y )⊗1 Z)

F (aX,Y,Z)
// F (X ⊗1 (Y ⊗1 Z))

We also require that F (1C1) is isomorphic to 1C2 .

Returning to the subject of monoid objects, we remark on an extremely basic fact: Definition
A.3.1 does not make sense in a general monoidal category. The culprit are the first and last face
maps d0, dn : X([n])→ X([n−1]), which are meant to be projections. In a monoidal category, where
the monoidal structure has nothing to do with Cartesian product, these maps usually cannot be
defined. For instance, in the monoidal category (VectK,⊗K), there is no such thing as a projection
operator V ⊗K W → V .

The solution to this problem that we shall follow is to modify Definition A.3.1 by throwing away
the first and last face maps. This has the effect of taking a simplicial object X : ∆op → C, and
restricting to the category ∆op

int ⊂∆op of intervals (see Section A.1). Because ∆op
int
∼= ∆a, we obtain

an augmented cosimplicial object X ′ : ∆a → C. Now we have a new problem, since this process
of throwing away face maps destroys the principal edge maps that are at the heart of Definition
A.3.1.

The solution to this new problem is to notice that ∆a is itself a monoidal category. In this
definition, recall that n = [n− 1] is a set of cardinality n, and that ∆a contains 0 = [−1] = ∅.

Proposition A.3.5 ([1], article “simplex category”). Define a functor ⊕ : ∆a ×∆a → ∆a as
follows. Set n ⊕m = n + m, the ordinary sum of ordinals; thus [n] ⊕ [m] = [n + m + 1]. For
f : [n]→ [k] and g : [m]→ [`], set f ⊕ g to be the function given by the formula

(f ⊕ g)(i) =

{
f(i), if 0 ≤ i ≤ n,
g(i− (n+ 1)) + k + 1, if n+ 1 ≤ i ≤ n+m+ 1.

Let 0 = [−1] be the unit object, and let a and ι be identity morphisms. Then these structures define
a monoidal structure on ∆a (which is strictly associative).

Definition A.3.6. Let (C,⊗) be a monoidal category. A monoid object in C is a monoidal functor
X : (∆a,⊕)→ (C,⊗).

This definition is motivated a result of Mac Lane [54, VII.5, Proposition 1]. A monoidal category
is called strict if the associativity isomorphisms αX,Y,Z and the unitality isomorphism ι are all
identities. Then [54, VII.5, Proposition 1] states that, when (C,⊗) is a strict monoidal category,
there is a bijection between monoidal functors (∆a,⊕) → (C,⊗) and monoid objects in a more
standard sense (presented below). In other words, (∆a,1) is the universal “monoidal category
equipped with a monoid object.” When (C,⊗) is not strict, there is no longer such a bijection, but
since every monoidal category is monoidally equivalent to a strict one (the “Mac Lane strictness
theorem” [25, Theorem 2.8.5]), Definition A.3.6 has essentially the same generality as the standard
definition.

Observe that, in Definition A.3.6, a monoid object is an instance of an augmented cosimplicial
object. Let us remark a bit more on the structure of such a monoid object. In this definition,
X(0) ∼= 1C, and the “underlying object” of the monoid object is X(1). Because X is a monoidal
functor and 1⊕n = n (cardinalities add), we have X(n) = X(1 ⊕ · · · ⊕ 1) ∼= X(1)⊗n. The unit in
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X(1) is induced by the unique coface map δ0 : 0→ 1, and the product on X(1) is induced by the
unique codegeneracy map σ0 : 2→ 1.

Remark A.3.7. At this point, we could attempt to formulate the idea that a monoidal category is
the same thing as a monoid object in Cat, the category of categories. This is actually already a
higher-categorical notion so we will defer this until later.

Definition A.3.6 is not the “standard” definition of a monoid object in a monoidal category,
but it is the one whose generalization to the (∞, 1)-categorical setting we shall use. For added
motivation, we shall now recall the standard definition and show how a monoid object in the sense
of Definition A.3.6 gives rise to one in the standard sense.

The standard definition of a monoid object in a monoidal category (C,⊗) is the direct abstraction
of the definition of a ordinary monoid in the category of sets. Thus it is an object A of C, together
with morphisms m : A ⊗ A → A and e : 1C → A, and these are required to satisfy the associative
law and the left and and right unit axioms, expressed by the following commutative diagrams.

(60) (A⊗A)⊗A

m⊗1A
��

aA,A,A// A⊗ (A⊗A)

1A⊗m
��

A⊗A
m
��

A⊗A
m
��

A A

A
∼= // 1C ⊗A

e⊗1A
��

A⊗A
m
��
A

A
∼= // A⊗ 1C

1A⊗e
��

A⊗A
m
��
A

We may think of Definition A.3.6 as a (highly redundant) way of encoding the same data and
conditions. Let X : (∆a,⊕) → (C,⊗) be a monoidal functor. We shall show that the object
A = X(1) carries the structure of a monoid object in the standard sense.

First we construct the product on X(1); it is a map m : X(1)⊗X(1)→ X(1). Part of the data
of a monoidal functor is an isomorphism J1,1 : X(1)⊗X(1)→ X(1⊕ 1) = X(2). Because X is a
functor, the morphism σ0 : 2→ 1 induces X(σ0) : X(2)→ X(1). We define m as the composition
m = X(σ0) ◦ J1,1.

(61) m : X(1)⊗X(1)
J1,1 // X(2)

X(σ0)// X(1).

The structure of the proof that m so defined satisfies the associative law involves composing
several commutative diagrams that have three sources: functoriality of X, the naturality of the
transformation J , and also the coherence condition for J that is involved in the definition of a
monoidal functor. It is possible to display the entire argument as a single commutative diagram:



34 JAMES PASCALEFF

(62)

(X(1)⊗X(1))⊗X(1)

J1,1⊗1X(1)

��

(X(1)⊗X(1))⊗X(1)

J1,1⊗1X(1)

��

a // X(1)⊗ (X(1)⊗X(1))

1X(1)⊗J1,1

��

X(1)⊗ (X(1)⊗X(1))

1X(1)⊗J1,1

��
X(2)⊗X(1)

X(σ0)⊗1X(1)

��

X(2)⊗X(1)

J2,1

��

X(1)⊗X(2)

J1,2

��

X(1)⊗X(2)

1X(1)⊗X(σ0)

��
X(1)⊗X(1)

J1,1

��

X(3)

X(σ0)

��

X(3)

X(σ1)

��

X(1)⊗X(1)

J1,1

��
X(2)

X(σ0)

��

X(2)

X(σ0)

��

X(2)

X(σ0)

��

X(2)

X(σ0)

��
X(1) X(1) X(1) X(1)

The proof consists of the following comments on diagram (62):

• The arrow in the top row is a = aX(1),X(1),X(1), the associativity constraint.
• The left-most column in the diagram forms the composition m◦ (m⊗1X(1)), and the right-

most column forms the composition m◦(1X(1)⊗m). Thus the commutativity of (62) implies
the associative law for m.
• Consider the sub-diagram formed by the two left-most columns of (62). It suffices to check

that the middle rectangle whose vertices are X(2)⊗X(1) and X(2) commutes. This follows
from the fact that J is a natural transformation of functors ∆a×∆a → C. Namely, consider
the morphism (σ0, 11) : (2,1) → (1,1) in ∆a ×∆a. Applying the functor X(−) ⊗ X(−)
yields X(σ0)⊗ 1X(1) : X(2)⊗X(1)→ X(1)⊗X(1), while applying the functor X(−⊕−)

yields X(σ0) : X(3) → X(2), and these are the maps appearing in the rectangle under
consideration. The equation J1,1 ◦ (X(σ0) ⊗ 1X(1)) = X(σ0) ◦ J2,1 is an instance of the
naturality condition for J .
• Consider the sub-diagram formed by the two right-most columns of (62). This diagram

commutes by naturality of J , with essentially the same argument as above.
• Consider the sub-diagram formed by the two middle columns of (62). The equality between

the two copies of X(3) divides this sub-diagram into upper and lower rectangles whose
commutativity is proved separately.

– For the upper rectangle, observe that it consists entirely of components of the natural
transformation J and the associativity constraint a. This rectangle is nothing but
an instance of the coherence condition (59) appearing in the definition of a monoidal
functor, so it commutes by hypothesis.

– The commutativity of the lower rectangle follows from the functoriality of X. In the
category ∆a, the two sequences of arrows

(63) 3
σ0
// 2

σ0
// 1 and 3

σ1
// 2

σ0
// 1

have the same composition, that is, the unique map σ0 : 3→ 1. Applying the functor
X to these sequences shows that both compositions in the lower rectangle equal X(σ0) :
X(3)→ X(1).

A.4. Different versions of (∞, 1)-categories. There are several versions of the theory (∞, 1)-
categories. For our present purpose we are interested in DG categories, A∞-categories, and ∞-
categories (also known as quasicategories or weak Kan complexes).
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DG categories and A∞-categories are always linear over a field K, while ∞-categories need not
be. However, there is a concept of K-linear ∞-category that makes comparison between all three
kinds possible.

A.4.1. DG versus A∞. Recall that a functor between DG categories or A∞-categories is a quasi-
equivalence if it induces an equivalence on cohomology categories, or in other words, it induces a
quasi-isomorphism on all morphism complexes and is essentially surjective. A basic observation is
that every DG category is an A∞-category with vanishing higher operations, and a less basic one
is that every A∞-category is quasi-equivalent to a DG category.

There are several ways to construct a DG category equivalent to a given A∞-category A. One
is to take the image of the Yoneda embedding A → ModA. The Yoneda lemma implies that this
functor is a quasi-equivalence onto its image, and ModA is always a DG category. Another way to
do this, used for instance by Canonaco-Ornaghi-Stellari [18], involves taking the bar construction
BA, which is a “DG cocategory”, and then taking the cobar construction Ω(BA) of that, which is
a DG category. In [18] it is shown that Ω(BA) is quasi-equivalent to A.

In fact, the results of Canonaco-Ornaghi-Stellari [18] imply that the homotopy categories of DG
categories and A∞-categories, localized with respect to the quasi-equivalences, are equivalent at
the (∞, 1)-categorical level. The present author has written a note that explains this in detail [65].

The precise result that we shall use is as follows. Let dgcat denote the ordinary category whose
objects are DG categories and morphisms are DG functors, and let a∞cat denote the ordinary
category whose objects are A∞-categories and morphisms are A∞-functors. Let Wdg and WA∞

denote the classes of quasi-equivalences. Define

(64) DGcat = N(dgcat)[N(Wdg)−1], A∞cat = N(a∞cat)[N(WA∞)−1]

to be localizations of ∞-categories. Then DGcat and A∞cat are equivalent as ∞-categories [65,
Corollary 5.2].

A.4.2. A∞-nerve. It is also possible to take a single A∞-category A and construct an ∞-category
out of it. This is the A∞-nerve construction NA∞ due to Faonte [28, 27] and Tanaka [71] indepen-
dently. The construction starts with the set [n] = {0 < 1 < · · · < n} considered as a category with
a single morphism i→ j if i ≤ j. There is then a K-linear category ∆n that has these morphisms
as basis elements; it is a DG category with vanishing differential. The set of n-simplices in the
nerve is then given by

NA∞(A)([n]) = FunA∞(∆n,A).

where the right-hand side is the set of A∞-functors.
Applying NA∞ to categories of A∞-functors is another way to understand the categories of DG

and A∞-categories. According to work of Faonte [27] and Oh-Tanaka [63], for any A∞-categories
A and B, there is a weak homotopy equivalence

HomA∞cat(A,B)→ NA∞(FunA∞(A,B))∼

where the right-hand side is the largest∞-groupoid contained in the A∞-nerve of the A∞-category
of A∞-functors from A to B.

A.4.3. DG and A∞ versus ∞-categories. Another important piece of work relating DG categories
to ∞-categories is that of Lee Cohn [19]. Cohn considers not the category DGcat defined above
but a further localization DGcatMorita where all Morita equivalences have been inverted. A Morita
equivalence is a functor that induces an equivalence of categories of modules. Cohn shows that
DGcatMorita is equivalent to the∞-category of idempotent complete K-linear stable∞-categories.

Rather than formally inverting Morita equivalences, another choice is to enlarge theA∞-categories
themselves. Given an A∞-category A, we may form its idempotent complete triangulated enve-
lope Twπ(A). Ornaghi [64] has shown that the A∞-nerve takes idempotent complete triangulated
A∞-categories to idempotent complete stable ∞-categories. As of this writing, it is not entirely
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clear whether the∞-categories of idempotent complete triangulated A∞-categories and idempotent
complete stable ∞-categories are equivalent, but research in this area seems to be moving towards
this conclusion.

A.4.4. Tensor products. We must also discuss the tensor product of DG and A∞-categories. It is a
easy to construct a tensor product operation for DG categories by taking pairs of objects and tensor
products of morphism complexes. However, this notion is not homotopically stable. According to
Tabuada [70], there is a model structure on the ordinary category of DG categories whose weak
equivalences are Wdg, and whose associated homotopy ∞-category is DGcat ∼= A∞cat. The
derived tensor product [73] of two DG categories C and D is then defined to be

C ⊗L D := Q(C)⊗D
where Q(C) is a functorial cofibrant replacement for C with the same set of objects, and the tensor
product on the right-hand side is the naive tensor product of DG categories. The operation ⊗L

does respect quasi-equivalences, and so it descends to an operation on the homotopy category. In
the rest of the paper, the operation ⊗L is denoted simply by ⊗, because we have no use for the
naive tensor product of DG categories.

Multiple approaches to defining the tensor product of A∞-algebras and A∞-categories are avail-
able in the literature, some of them very explicit. The underlying problem is to construct a diagonal
∆ : A∞ → A∞×A∞ for the A∞-operad, that is, a diagonal for the associahedra; a diagonal on the
multiplihedra may be used to define the tensor product of A∞-morphisms and A∞-functors. See
Saneblidze-Umble [66], Markl-Shnider [56], and Loday [48]. Masuda-Thomas-Tonks-Vallette [57]
and Laplante-Anfossi–Mazuir [44] have provided convenient realizations of these diagonals in terms
of polytopes.

This method of defining tensor products of A∞-algebras and A∞-categories still presents chal-
lenges: if a∞cat denotes the ordinary category of A∞-categories and A∞-functors, then there is
apparently no way to use such diagonals to make a∞cat into a monoidal category in the sense of
Definition A.3.2. There is no diagonal on the multiplihedra that is strictly compatible with com-
position of A∞-functors [44, Proposition 4.25]; this means that the tensor product does not define
a functor a∞cat × a∞cat → a∞cat, although it is functorial with respect to strict11 A∞-functors.
If we restrict to strict A∞-functors, there is still a problem, since there is no diagonal on the asso-
ciahedra that is strictly coassociative [56, Theorem 6.1]; this means that the tensor product is only
associative up to an A∞-isomorphism that cannot always be strict. However, the diagonal on the
associahedra is coassociative up to homotopy, and the tensor product of A∞-functors is compatible
with composition up to homotopy [44, Proposition 4.26]. Thus a homotopy-coherent framework,
such as the theory of monoidal ∞-categories (Section A.5), is necessary to handle this case.

For our present purpose, we shall not use an explicit formula for the tensor product of A∞-
categories. Instead, we use the equivalence of ∞-categories DGcat ∼= A∞cat to transfer the
derived tensor product on DGcat over to A∞cat, and in this way make A∞cat into a monoidal
∞-category whose product is also denoted by ⊗.

In his work on the Künneth theorem for Lagrangian Floer cohomology, Amorim [7, 8] used a
similar approach. Amorim converts given A∞-algebras A and B into quasi-isomorphic DG algebras,
takes the tensor product in DG algebras, and then applies homotopy transfer to obtain an A∞-
structure on A⊗B. Amorim works with filtered and possibly curved A∞-algebras, and gives explicit
formulas for all of these steps; his construction recovers the Markl-Shnider tensor product in cases
where the latter is defined. Thus Amorim’s work shows that the tensor product defined in terms of
a diagonal can be seen as a particular instance of the general idea of transferring the tensor product
from DG to A∞-algebras. It would be an excellent project to make the explicit tensor products of
A∞-categories mentioned above fit into the ∞-categorical framework.

11An A∞-morphism or A∞-functor is called strict if all of its components vanish except for the linear one.
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There is also a tensor product on K-linear stable∞-categories [10, §4.1], which is the recipient of
the universal colimit preserving bifunctor C×D → C⊗D. An alternative way to define the tensor
product would be to replace A∞cat and DGcat by their localizations at Morita equivalences (or
apply Twπ to all of the categories), apply Cohn’s result, and then transport the tensor product of
K-linear stable ∞-categories over. The general formalism used in this paper is not sensitive to this
choice.

A.4.5. Symp as an (∞, 1)-category. These remarks suggest a way to formulate the structure of
Symp as an (∞, 1)-category. The objects are symplectic manifolds, and the space of 1-morphisms
X → Y is the ∞-groupoid

NA∞(F(X × Y ))∼

where F stands for the idempotent complete triangulated Fukaya A∞-category. The composition
in this category should be induced by the Ma’u-Wehrheim-Woodward composition functors, but
this may not be strictly associative. An natural Ansatz is that these composition functors may be
extended to a Segal category enriched over∞-groupoids (see Section A.8). There is a Quillen equiv-
alence between such Segal categories and ∞-categories [39], and passing through this equivalence
we may regard Symp as an ∞-category. This version of Symp would suffice for the construction
of monoid objects in the main body of the paper.

A.5. Monoidal (∞, 1)-categories and monoid objects in them. It turns out that Definition
A.3.1 generalizes directly to ∞-categories.

Definition A.5.1 ([53] Definition 4.1.2.5). Let C be an ∞-category. A monoid object of C is a
simplicial object X : N(∆op)→ C, with the property that the principal edges

{ei,i+1 : X([n])→ X([1])}0≤i≤n−1

exhibits X([n]) as a product X([1])n. This condition is called the Segal condition.

The complexity of this definition is contained in the phrase “exhibit as a product”. In the context
of this definition it means that, for any object Y of C, the principal edges induce a map on mapping
spaces

MapC(Y,X([n]))→
n−1∏
i=0

MapC(Y,X([1])),

and this map is required to be a weak homotopy equivalence.
Amazingly, Definition A.5.1 can even be applied when C = Cat∞ is the ∞-category of ∞-

categories, and this gives one of the possible definitions of a monoidal ∞-category.

Definition A.5.2 ([50] Remark 1.2.5, [34] Chapter 1 §3.1). A monoidal ∞-category is a monoid
object in Cat∞.

This means that a monoidal ∞-category is a simplicial object X : N(∆op) → Cat∞ with the
property that the principal edges induce an equivalence of ∞-categories X([n])→ X([1])n.

Definition A.5.3. A monoidal A∞-category is a monoid object in A∞cat, where the latter is
considered as an ∞-category. This means that the map X([n])→ X([1])n is a quasi-equivalence of
A∞-categories.

These definitions are direct generalizations of Definition A.3.1, which was in turn motivated by
Proposition A.2.2. Generalizing the discussion that surrounds that proposition and definition, we
now explain how these new definitions gives rise to an “associative bifunctor.”

Let X be a monoidal A∞-category in the sense of Definition A.5.3. Then for each n ≥ 0, X([n])
is an A∞-category, and we focus on n = 1, 2. Write A for X([1]); it is the underlying category of
the monoidal structure. There are three A∞-functors

X(d0), X(d1), X(d2) : X([2])→ A,
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and the hypothesis is that

X(d2)×X(d0) : X([2])→ A×A

is a quasi-equivalence of A∞-categories. We may therefore choose a homotopy inverse to X(d2)×
X(d0), call it F : A × A → X([2]); this F is not strictly unique but it is unique up to homotopy.
Then define

m = X(d1) ◦ F : A×A→ A.

This m is the bifunctor for the monoidal product on A. Note that it involves a choice of homotopy
inverse F , so it is not uniquely determined by the data of X itself (but it is determined up to
homotopy).

The argument that the bifunctor m is associative up to homotopy involves X([3]), and the
following diagram. For brevity we write Xn = X([n]) and di for what is really X(di):

(65) X3
d3×(d0◦d0)

xx

d1

$$
X2 ×X1

(d2×d0)×1X1

vv

d1×1X1

&&

X2

d2×d0

zz

d1

  
(X1 ×X1)×X1 X1 ×X1 X1

Now we argue as follows

• The simplicial relation di◦dj = dj−1◦di for i < j immediately implies that the square in this
diagram is commutative up to homotopy, since it is the image under X of a commutative
diagram in ∆op.
• The Segal condition implies that the “down and to the left” arrows in this diagram are all

quasi-equivalences. In fact the composite map X3 → (X1×X1)×X1 in this diagram is the
Segal map.
• The “zig-zag” formed by the bottom two rows corresponds to the composite m ◦ (m× 1X1).

More precisely, we have chosen a homotopy inverse F for d2× d1, and using that to reverse
the arrows in the zig-zag we obtain m ◦ (m× 1X1).
• We may therefore conclude that the functor m◦(m×1X1) is homotopic to a functor obtained

by inverting the Segal map X3 → (X1 × X1) × X1 and then applying d1 ◦ d1 : X3 → X1,
which is the “big zig-zag” in the diagram.
• We then consider the other association m ◦ (1X1 × m). A directly analogous diagram

shows that this functor is homotopic to a functor obtained by inverting the Segal map
X3 → X1 × (X1 ×X1) and then applying d1 ◦ d2 : X3 → X1.
• Because d1 ◦ d2 = d1 ◦ d1 in ∆op, the functors X3 → X1 induced by these maps are also

homotopic. Thus the functors considered in the previous two bullet points are homotopic
to each other, which was to be shown.

The preceding argument implicitly constructs a homotopy H between m ◦ (m × 1X1) and m ◦
(1X1 ×m). The next component X4 serves to witness the coherence of H when it is used to relate
the five different functors X4

1 → X1 that may be built from m. The higher components Xn serve
to witness higher “coherences between the coherences.”

Thus far, we have only defined monoid objects in an∞-category C in the case where the ambient
monoidal structure on C is the categorical Cartesian product. We seek to generalize Definition A.3.6
to the case where (C,⊗) is a monoidal ∞-category. Recall that (∆a,⊕) is a monoidal category
whose monoidal operation is strictly associative. Passing to the nerve N(∆a), which is an ∞-
category, we again obtain a strictly associative bifunctor ⊕ : N(∆a) × N(∆a) → N(∆a). Thus
(N(∆a),⊕) is a monoidal ∞-category in the sense of Definition A.5.2.
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Strictly speaking, the object that is referred to in Definition A.5.2 is not the pair (N(∆a),⊕)
itself but the simplicial ∞-category X(N(∆a),⊕) : N(∆op) → Cat∞ obtained by “applying the
classifying space construction with respect to ⊕.” That is, X(N(∆a),⊕)([n]) is the n-fold Cartesian

product N(∆a)
×n, the face maps are given by projection and ⊕, degeneracies are units, and so on.

Definition A.5.4. Let (C1,⊗1) and (C2,⊗2) be monoidal ∞-categories, whose structures are en-
coded by simplicial∞-categories X(C1,⊗1) and X(C2,⊗2). A monoidal functor F : (C1,⊗1)→ (C2,⊗2)
is a map of simplicial ∞-categories X(C1,⊗1) → X(C2,⊗2).

Definition A.5.5. Let (C,⊗) be a monoidal∞-category. A⊗-monoid object in (C,⊗) is a monoidal
functor Z : (N(∆a),⊕)→ (C,⊗).12

This definition is a direct generalization of Definition A.3.6. It may be challenging to unpack
since our object X(N(∆a),⊕) is “(co)simplicial” in (at least) two distinct ways. Let Z be a ⊗-monoid
object. Then Z([1]) is a map N(∆a)→ C, and so it is an augmented cosimplicial object in C. The
point is that this augmented cosimplicial object is further constrained by the fact that Z is a
monoidal functor. Because 1⊕k = k in ∆a, and Z is a monoidal functor, there is a single object
A = Z([1])(1) in C such that Z([1])(k) is equivalent to A⊗k in C. It also implies that there are
maps m : A ⊗ A → A and e : 1C → A such that the restriction of Z([1]) to the generating coface
and codegeneracy maps in ∆a is equivalent to a diagram of the form

(66) 1C // A
//
// A⊗Aoo //

//

//
A⊗A⊗Aoo

oo · · ·

where the left-to-right maps come from e, and the right-to-left maps come from m. The state-
ment that Z is a monoidal functor also encodes an extension of this diagram to a fully homotopy
coherently associative and unital multiplication on the object A.

Indeed, the homotopy coherent associativity of m : A⊗A→ A in this context may be explained
in terms of the diagram (62) (where X = Z([1]) and A = X(1)). Recall that this diagram is used to
prove the associativity of m in the classical context, and that the proof proceeded by showing that
each of the smaller rectangles commutes due to a certain condition: functoriality of X, naturality
of J , and the coherence condition for J . In the ∞-categorical context, each of these conditions is
replaced by data that witness the homotopy commutativity of each rectangle in (62).

Conversely, giving a ⊗-monoid object of (C,⊗) is essentially the same as giving maps m : A ⊗
A → A and e : 1C → A such that the diagram (66) admits an extension to a monoidal functor
(N(∆a),⊕) → (C,⊗), together with a choice of such extension. We summarize this discussion in
the following proposition.

Proposition A.5.6. To give a ⊗-monoid object in a monoidal ∞-category (C,⊗), it is equivalent
to give a object A and maps m : A⊗A→ A and e : 1C → A, such that the diagram (66) constructed
from these data admits an extension to a monoidal functor (N(∆a),⊕) → (C,⊗), together with a
choice of such extension.

Remark A.5.7. The definition of monoid object in (C,⊗) presented here is different from the one
in [50]. Let us comment on the relationship. In [50], a monoidal ∞-category is regarded as a
coCartesian fibration of ∞-categories p : C⊗ → N(∆op) satisfying a Segal condition, where the
underlying ∞-category is the fiber of this fibration at [1], that is, C = C⊗[1]. It is proved that this

definition is equivalent to Definition A.5.2. A monoid object in (C,⊗) is then defined to be a section
X : N(∆op)→ C⊗ of the coCartesian fibration p. Thus a monoid object is in particular a simplicial
object, but in the larger category C⊗, not C itself.

We now sketch how to pass from such a monoid object to one in the sense of Definition A.5.5.
Take the map X : N(∆op) → C⊗, and restrict it along the embedding N(∆a) → N(∆op) to
obtain an augmented cosimplicial object X ′ in C⊗. Now X ′ is a section of the restricted fibration

12⊗-monoid objects are also commonly referred to as algebras in (C,⊗).
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p′ : C⊗|N(∆a) → N(∆a). Therefore X ′([n]) is an object of C⊗[n], and this object may be projected

to C⊗[1] = C using the ⊗-product. The result is an augmented cosimplicial object in C of the correct

form to be a monoid object in the sense of our definition.

A.6. The monoidal∞-categories (A∞cat,⊗) and (Symp,×) and monoid objects in them.
Now we turn to the main application of the preceding theory in the main body of the paper. For
triangulated A∞-categories A and B, we have two notions of product, the ordinary product A×B
and the K-linear tensor product A ⊗ B. For any third A∞-category C, functors A × B → C are
A∞-bifunctors, but functors A ⊗ B → C are A∞-functors that are K-bilinear, in the sense that
they commute with the operation of tensoring an object in A or B with any given chain complex
over K.

For instance, suppose that X and Y are perfect stacks [10]. If Perf denotes the ∞-category of
perfect complexes, then we have [10, Theorem 1.2]

Perf(X)× Perf(Y ) = Perf(X
∐

Y ), Perf(X)⊗ Perf(Y ) = Perf(X × Y ).

The same thing happens for Fukaya categories: F(X)×F(Y ) is at least morally the Fukaya category
of the disjoint union X

∐
Y , while F(X)⊗ F(Y ) is comparable to F(X × Y ).

We turn our attention now to Symp, with the understanding that our discussion is conditional
on certain Ansätze about this object. Given two symplectic manifolds X and Y , we may form
their Cartesian product X × Y . This is the same thing as the categorical Cartesian product in the
category of smooth manifolds, in the sense that, for any manifold Z a smooth map Z → X × Y
is the same as a pair of smooth maps Z → X and Z → Y . However, the Cartesian product
X × Y is not the categorical Cartesian product in Symp. For if it were, then we would have
projection morphisms X × Y → X and X × Y → Y , but these maps are not given by Lagrangian
correspondences; also, the statement “a Lagrangian correspondence from Z to X × Y is the same
thing as a pair of Lagrangian correspondences from Z to the factors” is obviously false.

In summary, the tensor product on A∞cat and the Cartesian product on Symp are definitely
non-Cartesian monoidal structures, and this is why we need to use the theory introduced above.

The statement that (A∞cat,⊗) is a monoidal ∞-category is a purely algebraic statement, and
we shall not elaborate on it further. The statement that (Symp,×) is a monoidal ∞-category is
worth understanding. As suggested in Section A.4.5, this ∞-category would be the one where the
space of 1-morphisms X → Y is the ∞-groupoid

NA∞(F(X × Y ))∼

obtained as the largest Kan complex contained in the A∞-nerve, but since that object is derived
from F(X × Y ) it suffices to consider the latter. The functor × : Symp × Symp → Symp takes
a pair of symplectic manifolds (X,Y ) to their product X × Y . Considering pairs of 1-morphisms
(X1 → X2, Y1 → Y2), we must also have a functor

× : F(X1 ×X2)× F(Y 1 × Y2)→ F(X1 ×X2 × Y1 × Y2).

This functor should be defined by taking a pair of Lagrangian correspondences to their Cartesian
product (and rearranging the factors). Since the underlying geometric operation is Cartesian prod-
uct at all levels, it seems very likely that, in the final analysis of Symp, this bifunctor can be made
strictly associative.

We should also discuss the meaning of the statement that the Fukaya category functor

F : (Symp,×)→ (A∞cat,⊗)

is a monoidal functor. In order for this to be true, we would need to know that F(pt) is the
category of chain complexes, and that F(X × Y ) ∼= F(X) ⊗ F(Y ). The statement about F(pt)
is true as a purely formal matter, but the second claim has geometric content, since it says that
F(X × Y ) is generated by product Lagrangians. In general, all that is obvious is that there is a
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functor F(X) ⊗ F(Y ) → F(X × Y ) that takes a pair of Lagrangians to its product. This means
precisely that F is a lax monoidal functor from (Symp,×) to (A∞cat,⊗).

In the theory of ordinary monoidal categories, it is known that lax monoidal functors take monoid
objects to monoid objects [1, article “monoidal functor”]. We could attempt to formulate this fact
at the∞-categorical level, which would imply that any monoid object in (Symp,×) goes over to a
monoid object in (A∞cat,⊗) after taking the Fukaya category. Instead we shall content ourselves
to writing out the definition of monoid objects in the two categories in a way that makes the parallel
between them obvious.

Definition A.6.1 (Monoid object in Symp). A ×-monoid object in Symp consists of a symplectic
manifold G and (generalized) Lagrangian correspondences m : G × G → G and e : pt → G, such
that the diagram

(67) pt // G
//
// G×Goo //

//

//
G×G×Goo

oo · · ·

where the left-to-right correspondences come from e, and the right-to-left correspondences come
from m, extends to a monoidal functor (N(∆a),⊕) → (Symp,×), together with a choice of such
extension.

Definition A.6.2 (Monoid object in A∞cat). A ⊗-monoid object in A∞cat consists of an A∞-
category F and A∞-functors m : F ⊗ F → F and e : ChK → F, such that the diagram

(68) ChK // F
//
// F ⊗ Foo //

//

//
F ⊗ F ⊗ Foo

oo · · ·

where the left-to-right functors come from e, and the right-to-left functors come from m, extends
to a monoidal functor (N(∆a),⊕)→ (A∞cat,⊗), together with a choice of such extension.

A.7. Modules. We have so far considered monoid objects, but we also need to discuss module
objects over monoid objects. The main difference is that we replace the indexing category ∆
with a new version ∆+ where some simplices have marked vertices. There is not really any new
complexity to the notion of homotopy associativity, so we will be brief.

We use the category ∆+ defined in [34, Chapter 1 §3.4]. The category ∆+ has two kinds of
objects: for each n ≥ 0, we have the linearly ordered set [n] = {0 < 1 < · · · < n} and also the
linearly ordered set [n]+ = {0 < 1 < · · · < n < +} that has a new element + added on. The element
+ marks the position of the module in the constructions. The morphisms in ∆+ are defined as
follows

(1) morphisms [n]→ [m] are monotonic maps,
(2) morphisms [n]→ [m]+ are monotonic maps whose image does not contain +,
(3) there are no morphisms [n]+ → [m],
(4) morphisms [n]+ → [m]+ are monotonic maps that map + to +, and such that the preimage

of + is +.

The idea behind this definition is that given a monoid A and a module M (in the category of
sets), we define X([n]) = An and X([n]+) = An ×M . There are maps Am → An that encode
the monoid structure of A, there are maps Am ×M → An that project out the M factor and use
the monoid structure of A, there are no meaningful maps Am → An ×M , and there are maps
Am ×M → An ×M that encode the module structure of M .

Observe that the category ∆+ contains ∆ as a full subcategory. We first consider the Cartesian
case.

Definition A.7.1 ([34], Chapter 1 §3.4). Let C be an ∞-category. A monoid-module pair in C

consists of a map X : N((∆+)op) → C, with the property that the restriction of this map to
N(∆op) is a monoid object in the sense of Definition A.5.1, and such that the map

X([n]+)→ X([n])×X([0]+)
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induced by the maps [n]→ [n]+ sending i 7→ i and [0]+ → [n]+ sending 0 7→ n and + 7→ +, exhibits
the left-hand side as a product.

The object X([0]+) is the underlying object of the module in the monoid-module pair. Applying
this definition with C = Cat∞ or C = A∞cat (with the Cartesian monoidal structure on C) gives
one definition of module category for a monoidal category.

To generalize to the case (A∞cat,⊗) or (Symp,×), where the ambient monoidal structure is
not Cartesian, we follow the same strategy of throwing away morphisms in ∆+ that correspond
to projections, meaning that the maximum element must always go to the maximum element, and
the minimum element must always go to the minimum element. This has the effect that there are
no morphisms between [n] and [m]+ in either direction. Thus the resulting category decomposes
into a disjoint union ∆int

∐
∆+

int, where ∆+
int is the full subcategory of objects of the form [m]+.

The equivalence ∆a
∼= ∆op

int and the monoidal structure on ∆a may be extended as follows.
Recall the monoidal category (∆a,⊕) whose objects are finite ordinals n. For each n ≥ 0, let

n+ be n with a new maximal element + adjoined. Define a new category ∆+
a whose objects are

n+, and such that the morphisms n+ → m+ are monotonic maps that map + to +. Then ∆+
a

is a module category (in the strict sense, and hence in any weaker or homotopy coherent sense)
for the strict monoidal category (∆a,⊕): the action on objects is n ⊕m+ = (n + m)+, that is,
concatenation of totally ordered sets, and the action on morphisms is a concatenation operation
similar to the one described in Proposition A.3.5.

The equivalence of categories ∆a
∼= ∆op

int from Proposition A.1.1 generalizes to an equivalence

∆+
a
∼= (∆+

int)
op. These equivalences send n to [n] and n+ to [n]+.

Recall that in (∆a,⊕), the object 1 is a monoid object. In ∆+, the object 0+ = {+} is a module
object over 1, where the action is given by the unique morphism 1 ⊕ 0+ = 1+ → 0+. (In this
sentence we have invoked the concept of a “module B over a monoid A where A is an object of a
monoidal category C and B is an object of a module category M for C”. This concept exists in the
classical case but we have not developed it. The present paragraph is meant to serve as motivation
for the formal definition that follows.) Just as (∆a,1) is the universal “monoidal category with
a monoid object,” the tuple (∆a,∆

+
a ,1,0

+) is the universal “monoidal category with a module
category and a monoid object and a module object.”

For the next definition, observe that any monoidal ∞-category (C,⊗) is a module over itself.

Definition A.7.2. Let (C,⊗) be a monoidal ∞-category. Let X(C,C) : N((∆+)op) → Cat∞
be monoid-module pair corresponding to C regarded as a module over itself, and let X(∆a,∆

+
a ) :

N((∆+)op)→ Cat∞ be the monoid-module pair corresponding to the classical monoidal category
∆a and its module category ∆+

a . Then we define a ⊗-monoid-module pair in C to be a morphism
F : X(∆a,∆

+
a ) → X(C,C).

More generally, if Y : N((∆+)op) → Cat∞ is any monoid-module pair in Cat∞, then an Y -
monoid-module pair is a morphism F : X(∆a,∆

+
a ) → Y .

Let us unpack this definition slightly: given a morphism F : X(∆a,∆
+
a ) → X(C,C), the evaluation

on [1] is a map F ([1]) : N(∆a) → C, and evaluating this on 1 gives an object A = F ([1])(1) of C
that is the underlying object of the monoid in the ⊗-monoid-module pair. Evaluating F on [0]+

gives a map F ([0]+) : N(∆+)→ C, and evaluating this on 0+ gives an object M = F ([0]+)(0+) of
C that is the underlying object of the module.

A.8. Category objects and (∞, 2)-categories. Considering the characterization of the nerve
of a category expressed by Proposition A.2.3, we may define the notion of a “category object” or
“Segal object” in an ∞-category, and this provides an approach to the theory of (∞, 2)-categories.
For instance this approach is used in [52, 34].
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Definition A.8.1. Let S be a set, and let C be an ∞-category. A category object in C with object
set S is a map X : N(∆op

S )→ C with such that

(1) for any s ∈ S, X([s]) is a final object of C,
(2) for any sequence [s0, . . . , sn], the Segal map (induced by the principal edges)

X([s0, s2, . . . , sn])→ X([s0, s1])×X([s1, s2])× · · · ×X([sn−1, sn])

exhibits the left-hand side as a product in C.

Applying this definition with C = Cat∞ is one of the known ways to define the concept of
(∞, 2)-category.

Definition A.8.2. A Segal category enriched over ∞-categories is a category object in Cat∞ in
the sense of Definition A.8.1. A Segal category enriched over A∞-categories is a category object
in A∞cat in the same sense, meaning that the Segal map is always an quasi-equivalence of A∞-
categories. In this definition we regard Cat∞ and A∞cat as ∞-categories.

Let us unpack this definition a little bit in the A∞ case. Let C be a Segal category enriched
over A∞-categories with object set S. Then for any objects s0, s1 ∈ S, there is an A∞-category
HomC (s0, s1). Given three objects s0, s1, s2, we have a composition A∞-functor

HomC (s0, s1)×HomC (s1, s2)→ HomC (s0, s2)

obtained by taking a homotopy inverse to the Segal map at level [s0, s1, s2] followed by the middle
face map d1. These composition A∞-functors are then associative up to an A∞ natural isomorphism
of A∞-functors, together with all higher coherences for this associativity.

Remark A.8.3. A Segal category enriched over A∞-categories is a kind of (∞, 2)-category that is a
mixture of two approaches, where we are using the Stasheff associahedra to govern the homotopy
associativity of the 2-morphisms and higher morphisms, but using the simplex category ∆op to
govern the homotopy associativity of the 1-morphisms. The notion of (A∞, 2)-categories defined
by Bottman and Carmeli [13, 16] uses the 2-associahedra to govern all morphisms simultaneously.

Remark A.8.4. It is possible to iterate the definition of Segal category to obtain theories of (∞, n)-
categories for all n ≥ 0. An important point here is that, in passing from (∞, n− 1)-categories to
(∞, n)-categories, one first needs to define the correct notion of weak equivalence of (∞, n − 1)-
categories so that the meaning of the Segal condition at the next level is correct. The purpose of
our remarks is merely to show a way that the concept of (∞, 2)-category can be defined, rather
than to study the homotopy theory of (∞, 2)-categories themselves.

Faonte [27] has used the concept of a Segal category enriched over∞-categories as a natural way
to formulate A∞cat as an (∞, 2)-category. In this version of A∞cat, the objects are A∞-categories,
and for two A∞-categories A and B, the ∞-category of 1-morphisms is

HomA∞cat(A,B) = NA∞(FunA∞(A,B)),

where FunA∞ is the A∞-category of unital A∞-functors, and NA∞ is the nerve construction of
Faonte and Tanaka. Faonte constructed a strictly associative composition in this setting.

Finally we can formulate our Ansatz about Symp as an (∞, 2)-category, namely that it may be
constructed as a Segal category enriched over A∞-categories, where the binary composition functors
are the Ma’u-Wehrheim-Woodward functors. This concept is formulated as Definitions 3.4.1 and
3.4.2 in the main body of the paper.
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