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Abstract. We show that the homotopy theories of differential graded categories and A∞-categories
over a field are equivalent at the (∞, 1)-categorical level. The results are corollaries of a theorem
of Canonaco-Ornaghi-Stellari combined with general relationships between different versions of
(∞, 1)-categories.

1. Introduction

The purpose of this note is to show that certain desirable propositions follow from a direct
combination of published results. The propositions state in various forms a “homotopy equivalence”
between the “homotopy theory of differential graded (DG) categories” and the “homotopy theory
of A∞-categories.”

The equivalence between DG categories and A∞-categories has been studied for several decades,
starting no later than the thesis of Lefèvre-Hasegawa [LH03]. Without recounting the whole history,
we shall begin our discussion with one of the more recent versions of this equivalence, proven by
Canonaco-Ornaghi-Stellari [COS19].

We fix a field k over which our categories are linear. Let DGCat denote the category whose objects
are small DG categories and whose morphisms are DG functors. Let A∞Cat denote the category
whose objects are small strictly unital A∞-categories and whose morphisms are strictly unital A∞-
functors. Both DGCat and A∞Cat are ordinary (rather than homotopy coherent) categories. They
are not small categories, but all of the categorical constructions we will perform on them may be
construed as happening within the framework of Grothendieck universes.

A DG category is, by definition, the same as an A∞-category with vanishing higher operations.
Likewise, a DG functor between DG categories is the same as an A∞-functor with vanishing higher
components. Thus there is a functor

(1) i : DGCat→ A∞Cat.

To a DG or A∞-category A we may associate a graded k-linear category H(A) by replacing all
hom-complexes by their cohomologies; if we retain only cohomology in degree zero, we obtain a
k-linear category H0(A). A DG or A∞-functor F : A→ B induces functors H(F ) : H(A)→ H(B)
and H0(F ) : H0(A)→ H0(B).

A DG or A∞-functor F : A → B is a quasi-equivalence if H(F ) and H0(F ) are both equiva-
lences of categories; this is equivalent to the conjunction of the conditions that F acts by quasi-
isomorphisms on all hom-complexes and that H0(F ) is essentially surjective. We denote by WDG

qe

the subcategory of DGCat with the same objects but with only the DG quasi-equivalences as mor-
phisms; similarly WA∞

qe denotes the subcategory of A∞Cat with the same objects but with only
the A∞-quasi-equivalences as morphisms.

We now state the results of Canonaco-Ornaghi-Stellari [COS19]. First is the construction of a
functor

(2) U : A∞Cat→ DGCat
1
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which could be called a rectification functor. On objects, this functor takes an A∞-category A, forms
the bar constructionBA, which is a “DG cocategory”, and then forms the cobar construction Ω(BA)
of that. The precise details are not necessary for our discussion, but only the following theorems.

Theorem 1.1 (Canonaco-Ornaghi-Stellari [COS19]). The functors U : A∞Cat ⇄ DGCat : i form
an adjunction such that

(1) U is left adjoint to i,
(2) i takes WDG

qe into WA∞
qe ,

(3) U takes WA∞
qe into WDG

qe ,

(4) all components of the unit η : idA∞Cat → iU belong to WA∞
qe , and

(5) all components of the counit ϵ : Ui→ idDGCat belong to WDG
qe .

Proof. All of these statements are contained in [COS19, Proposition 2.1], except for the statement
that i takes WDG

qe into WA∞
qe , which is obvious, and the statement that U takes WA∞

qe into WDG
qe ,

which is demonstrated in the proof of [COS19, Theorem 2.2]. □

Consider now the localizations DGCat[(WDG
qe )−1] and A∞Cat[(WA∞

qe )−1] formed by inverting
the quasi-equivalences—these are the homotopy categories of DG categories and A∞-categories
respectively.

Theorem 1.2 ([COS19], Theorem 2.2). The functors U and i induce mutually quasi-inverse equiv-
alences of homotopy categories

(3) A∞Cat[(WA∞
qe )−1] ⇄ DGCat[(WDG

qe )−1].

Theorem 1.2 follows directly from the formal properties stated in Theorem 1.1. Theorem 1.2
states that “the homotopy theory of DG categories” is equivalent to “the homotopy theory of A∞-
categories” at the 1-categorical level: the homotopy categories are equivalent as ordinary categories.

One may then ask whether “the homotopy theory of DG categories” is equivalent
to “the homotopy theory of A∞-categories” at the (∞, 1)-categorical level. We shall
show both that the answer is affirmative, and that this already follows from Theorem
1.1 without any further work involving DG or A∞-categories. That is to say, Theorem
1.1 implies not only Theorem 1.2, but also an equivalence of homotopy theories at the apparently
stronger (∞, 1)-categorical level. We give several precise formulations of this result. They are
Corollaries 2.5, 3.2, 4.3, 4.5, 5.1, and 5.2.

1.1. Context. The results of this note are presumably “folklore” or “well-known to experts.” On
the other hand, I was not able to find any reference for these results, so I went ahead and put
the pieces of the puzzle together myself. The main content of this note is the observation that a
certain kind of adjunction between relative categories (called a “Dwyer-Kan adjunction of relative
categories” below) implies an equivalence between their localizations at the (∞, 1)-categorical level.

I have not attempted to survey all of the literature that touches on the questions raised here, of
which there is a great deal, both about DG and A∞-categories, and about relationships between
different versions of (∞, 1)-categories. Nevertheless, I should note that the article of Vallette
[Val20] was very helpful. To relate different versions of (∞, 1)-categories, I have attempted to cite
the original sources for the various functors that we use, but the overall picture that emerges is
essentially the same as the one presented by Hinich [Hin16].

One motivation for this note was a 2020 preprint of Oh-Tanaka.1 I had wished to cite Theorem
1.1 from that preprint, but unfortunately it was withdrawn. Note that Oh and Tanaka work over
a general commutative base ring. The results of this note show that—in the special case where
the base ring is a field—Theorem 1.1 from that preprint is in fact true. However, the precise form

1Yong-Geun Oh and Hiro Lee Tanaka. A-infinity-categories, their infinity-category, and their localizations.
arXiv:2003.05806.
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of the equivalence appears to be different from the one proposed by Oh-Tanaka. Tanaka has also
informed me of ongoing work to recover Theorem 1.1 over a general commutative base ring.

1.2. Acknowledgements. I wish to thank Charles Rezk and Doron Grossman-Naples for very
helpful conversations, and Hiro Lee Tanaka for his comments on this note. I also thank the referee
for their comments.

2. Dywer-Kan equivalence

In their works [DK80b, DK80a], Dwyer and Kan studied a simplicially enriched version of the
localization of category at a subcategory. We shall isolate the concepts and results that we need.

By definition, a relative category is a pair (C,W ) consisting of a category C and a subcategory
W , subject only to the condition that W contain all objects (and hence all identity morphisms) of
C. We refer to the morphisms in W as weak equivalences.

A relative functor F : (C1,W1) → (C2,W2) is an ordinary functor F : C1 → C2 such that
F (W1) ⊆W2.

Recall that an adjunction L ⊣ R consists of two functors L : C → D, R : D → C and natural
transformations η : idC → RL and ϵ : LR→ idD called the unit and counit respectively, satisfying
certain relations known as triangle identities.

An adjoint equivalence is an adjunction such that both the unit and counit are natural isomor-
phisms. This condition obviously implies that L and R are equivalences of categories.

We now isolate an important concept from [DK80a]; I am not aware of a standard term for this
concept.

Definition 2.1. Let (C1,W1) and (C2,W2) be relative categories, and let (L,R, η, ϵ) be an adjunc-
tion, where L : C1 → C2 and R : C2 → C1. We say that (L,R, η, ϵ) is a Dwyer-Kan adjunction of
relative categories if the following conditions hold:

(1) L(W1) ⊆W2 and R(W2) ⊆W1, so that L and R are relative functors,
(2) for every object X in C1, the component of the unit ηX : X → RLX is in W1, and
(3) for every object Y in C2, the component of the counit ϵY : LRY → Y is in W2.

In the special case where Wi = Ci for i = 1, 2, a Dwyer-Kan adjunction of relative categories
is just an adjunction. In the special case where Wi consists precisely of the isomorphisms in Ci,
a Dwyer-Kan adjunction of relative categories is the same as an adjoint equivalence. Alternately,
a Dwyer-Kan adjunction of relative categories is “the same as” an adjoint equivalence where the
phrase “natural isomorphism” is replaced by “natural transformation in W .”

Theorem 2.2 (Restatement of 1.1). The functors U : (A∞Cat,WA∞
qe ) ⇄ (DGCat,WDG

qe ) : i form
a Dwyer-Kan adjunction of relative categories.

Next, given a relative category (C,W ), we may form the localization C[W−1] as an ordinary
category. In 1980, Dwyer and Kan [DK80b, DK80a] gave two constructions of simplicially enriched
categories that enhance C[W−1] to what contemporary mathematicians consider to be a kind of
(∞, 1)-category. In this sense, a relative category is perhaps the most elementary data structure
that presents an (∞, 1)-category.

The version that we shall use is the so-called hammock localization. Given a relative category
(C,W ), this construction produces a category enriched over simplicial sets LH(C,W ). The objects
of LH(C,W ) are the same as those of C, and for each pair of objects X,Y there is a morphism
simplicial set LH(C,W )(X,Y ) whose simplicies correspond to certain diagrams called hammocks;
the detailed definition will not concern us.

The simpicial sets LH(C,W )(X,Y ) are to be regarded as spaces and as such they have homotopy
groups. The category π0L

H(C,W ) is obtained by replacing each morphism space by its set of
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components. According to [DK80a, Proposition 3.1], there is a canonical isomorphism of categories

(4) π0L
H(C,W ) ∼= C[W−1].

An important property of hammock localization is that it is manifestly functorial with respect to
relative functors. That is, if F : (C1,W1)→ (C2,W2) is a relative functor, then there is an induced
simplicially enriched functor LHF : LH(C1,W1)→ LH(C2,W2).

We recall the appropriate notion of “weak homotopy equivalence” for simplicially enriched cat-
egories. Recall that a weak homotopy equivalence of simplicial sets is a map that, after passing to
geometric realizations, induces a bijection on π0 and an isomorphism on all homotopy groups with
all possible basepoints.

Definition 2.3. Let D1 and D2 be simplicially enriched categories, and let F : D1 → D2 be a
simplicially enriched functor. Then F is a Dwyer-Kan equivalence if the following conditions hold:

(1) The induced functor π0F : π0D1 → π0D2 is an equivalence of categories, and
(2) for every pair of objectsX,Y inD1, the map of simplicial sets F : D1(X,Y )→ D2(FX,FY )

is a weak homotopy equivalence of simplicial sets.

The following proposition asserts a relationship between Dwyer-Kan adjunctions of relative cat-
egories and Dwyer-Kan equivalences of localizations.

Proposition 2.4. Let (C1,W1) and (C2,W2) be relative categories, and let (L,R, η, ϵ) be a Dwyer-
Kan adjunction of relative categories, where L : C1 → C2 and R : C2 → C1. Then

LH(L) : LH(C1,W1)→ LH(C2,W2) and LH(R) : LH(C2,W2)→ LH(C1,W1)

are Dwyer-Kan equivalences of simplicially enriched categories. Also,

π0L
H(L) : C1[W

−1
1 ]→ C2[W

−1
2 ] and π0L

H(R) : C2[W
−1
2 ]→ C1[W

−1
1 ]

are mutually quasi-inverse equivalences of categories.

Proof. This is a restatement in our terminology of [DK80a, Corollary 3.6]. □

We remark that π0L
H(L) and π0L

H(R) actually fit into an adjoint equivalence of the ordinary
localizations, with unit and counit induced from η and ϵ.

According to Bergner [Ber07], there is a model category structure on the category of simplicially
enriched categories such that the weak equivalences are precisely the Dwyer-Kan equivalences. So
Proposition 2.4 states that LH(C1,W1) and LH(C2,W2) are weakly equivalent in the Bergner model
structure.

Corollary 2.5. The functors

(5) LH(U) : LH(A∞Cat,WA∞
qe ) ⇄ LH(DGCat,WDG

qe ) : LH(i)

are both Dwyer-Kan equivalences of simplicially enriched categories. That is to say, LH(U) and
LH(i) are both weak equivalences for the Bergner model structure on the category of simplicially
enriched categories.

3. The Barwick-Kan model structure on RelCat

Let RelCat denote the category whose objects are small relative categories and whose morphisms
are relative functors. Instead of taking simplicial localization of relative categories as above, we
may regard relative categories themselves as a kind of (∞, 1)-categories. In this vein Barwick-
Kan [BK12a, BK12b] defined a model category structure directly on RelCat. This model category
structure is designed so as to have a specific relationship to Rezk’s theory of complete Segal spaces
[Rez01]; we denote by sSpc the category of simplicial spaces (that is, bisimplicial sets) on which
Rezk’s complete Segal space model structure is defined.
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Theorem 3.1 ([BK12a, BK12b]). There is a model structure on RelCat, called the Barwick-Kan
model structure, with the following properties:

(1) there is an adjunction Kξ : sSpc ⇄ RelCat : Nξ where Kξ is left adjoint to Nξ, and this
adjunction is a Quillen equivalence between the Barwick-Kan model structure on RelCat
and Rezk’s complete Segal space model structure on sSpc,

(2) a morphism in RelCat is a weak equivalence if and only if its image under Nξ is a weak
equivalence in sSpc, and

(3) a morphism F : (C1,W1)→ (C2,W2) is a weak equivalence if and only if LHF : LH(C1,W1)→
LH(C2,W2) is a Dwyer-Kan equivalence of simplicially enriched categories.

Proof. This is a simplified paraphrase of [BK12b, Theorem 6.1] and [BK12a, Theorem 1.8]. □

Corollary 3.2. The relative functors U : (A∞Cat,WA∞
qe ) ⇄ (DGCat,WDG

qe ) : i are both weak
equivalences for the Barwick-Kan model structure on RelCat. Also, the functors Nξ(U) and Nξ(i)
are weak equivalences for Rezk’s complete Segal space model structure on sSpc.

4. Fibrant replacement, complete Segal spaces, and quasicategories

So far we have considered relative categories and simplicially enriched categories as models
for (∞, 1)-categories. It is now understood that many different models of (∞, 1)-categories are
equivalent: see [Ber10, Ber18] for surveys of these relationships.

Two further models for (∞, 1)-categories are complete Segal spaces and quasicategories. The
former has already made a passing appearance. The phrase “Rezk’s complete Segal space model
structure” refers to a model structure on sSpc, but a complete Segal space is a fibrant object for this
model structure. Similarly, there is a model structure on the category sSet of simplicial sets called
the Joyal model structure, and a quasicategory is a fibrant object for the Joyal model structure.

This means that in order to convert (DGCat,WDG
qe ) and (A∞Cat,WA∞

qe ) into complete Segal
spaces or quasicategories, we must consider fibrant replacements. In general, if M is a model
category and X is an object of M , we shall denote by Xfib a fibrant replacement of X, which is a
fibrant object Xfib of M equipped with an acyclic cofibration jX : X → Xfib. Given a morphism
ϕ : X → Y in M , and fibrant replacements jX : X → Xfib and jY : Y → Y fib, the composite jY ϕ is
a morphism whose target object is fibrant. Therefore it extends along the acyclic cofibration jX to
a morphism ϕfib : Xfib → Y fib such that ϕfibjX = jY ϕ. The morphism ϕfib is uniquely determined
up to homotopy. If ϕ is a weak equivalence, then ϕfib is as well, by the two-out-of-three property.

A natural question is whether the objects of RelCat we are interested in, namely (DGCat,WDG
qe )

and (A∞Cat,WA∞
qe ), are already fibrant for the Barwick-Kan model structure on RelCat. We have

the following proposition.

Proposition 4.1. The object (DGCat,WDG
qe ) is a fibrant object in RelCat.

Proof. According to Tabuada [Tab05], DGCat itself admits the structure of a model category such
that WDG

qe is the class of weak equivalences. The desired conclusion then follows from a result of
Meier [Mei16, Main Theorem]. □

Remark 4.2. I was unable to find any result implying that (A∞Cat,WA∞
qe ) is fibrant in RelCat,

but this may very well be true. See Section 6 for further discussion.

In order to proceed, let us choose a fibrant replacement jA∞ : (A∞Cat,WA∞
qe )→ (A∞Cat,WA∞

qe )fib

in RelCat. As explained above, we obtain morphisms

(6) Ufib : (A∞Cat,WA∞
qe )fib ⇄ (DGCat,WDG

qe ) : ifib

such that ifib = jA∞i and UfibjA∞ = U . Both ifib and Ufib are weak equivalences between fibrant
objects in RelCat.
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Recall that a right Quillen functor (= right adjoint in a Quillen adjunction) always preserves
fibrant objects and weak equivalences between fibrant objects.

Corollary 4.3. Let Nξ : RelCat → sSpc be the right Quillen functor appearing in Theorem

3.1. Then Nξ(DGCat,WDG
qe ) and Nξ(A∞Cat,WA∞

qe )fib are complete Segal spaces, and Nξ(i
fib)

and Nξ(U
fib) are equivalences between them.

To pass to quasicategories we use the following result of Joyal-Tierney [JT07].

Theorem 4.4 ([JT07]). There is a pair of adjoint functors p∗1 : sSet ⇄ sSpc : i∗1, with p∗1 left
adjoint to i∗1, which is a Quillen equivalence between the Joyal model structure on sSet and Rezk’s
complete Segal space model structure on sSpc.

By composing the Quillen equivalence in Theorem 4.4 with the one in Theorem 3.1, we obtain
a Quillen equivalence between RelCat with the Barwick-Kan model structure and sSet with the
Joyal model structure (such that RelCat is the domain of the right adjoint). This equivalence was
also explicitly described by Barwick-Kan [BK11].

Corollary 4.5. The simpicial sets i∗1Nξ(DGCat,WDG
qe ) and i∗1Nξ(A∞Cat,WA∞

qe )fib are quasicate-

gories, and i∗1Nξ(i
fib) and i∗1Nξ(U

fib) are equivalences between them.

Let us now summarize what we have achieved. Corollary 4.5 is a lift of Theorem 1.2 to the
level of quasicategories. Indeed, all of the functors that we are applying preserve the homotopy
category C[W−1] of a relative category (C,W ). The homotopy category of the quasicategory
i∗1Nξ(DGCat,WDG

qe ) is DGCat[(WDG
qe )−1], and likewise the homotopy category of i∗1Nξ(A∞Cat,WA∞

qe )fib

is A∞Cat[(WA∞
qe )−1]. So the equivalence of categories in Theorem 1.2 follows from Corollary 4.5

by taking the homotopy category.

5. Other quasicategory models

Since all models of (∞, 1)-categories are related, sometimes in several ways, there are other
“paths” from RelCat to the category of quasicategories.

One path goes through the simplicial localization. Given a relative category (C,W ), we form
LH(C,W ). This may not be fibrant (the morphism simplicial sets may not be Kan complexes),
so we should take a fibrant replacement (LH(C,W ))fib for the Bergner model structure.2 Then
we apply the homotopy coherent nerve Nc. Again this is a right Quillen functor in a Quillen
equivalence between the Bergner model structure on simplicially enriched categories and the Joyal
model structure on sSet, so Nc(L

H(C,W ))fib is a quasicategory.
We remark that the quasicategory Nc(L

H(C,W ))fib is equivalent to i∗1Nξ(C,W )fib, the version
considered previously [Mei16, p. 3277], [SP12].

From Corollary 2.5, we have a pair of Dwyer-Kan equivalences LH(i) and LH(U) relating the
simplicial localizations LH(DGCat,WDG

qe ) and LH(A∞Cat,WA∞
qe ). After fibrant replacement, we

obtain

(7) LH(U)fib : LH(A∞Cat,WA∞
qe )fib ⇄ LH(DGCat,WDG

qe )fib : LH(i)fib,

where both morphisms are again weak equivalences for the Bergner model structure.

Corollary 5.1. The maps NcL
H(i)fib and NcL

H(U)fib are equivalences between the quasicategories
Nc(L

H(DGCat,WDG
qe ))fib and Nc(L

H(A∞Cat,WA∞
qe ))fib.

It is also possible to take a relative category (C,W ) and directly produce a quasicategorical
localization by localizing the nerve N(C) with respect to the collection of edges W . Let us denote

2Two explicit constructions are given by applying to each morphism space either Sing| · | or Kan’s Ex∞ functor.
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such a localization by N(C)(W ). An explicit construction shown to me by Rezk consists of first
taking the pushout of the diagram of simplicial sets

(8)
∐
w∈W

J ←
∐
w∈W

∆1 → N(C),

where J is the walking isomorphism, and then taking fibrant replacement for the Joyal model
structure. However, the object N(C)(W ) is really intended to be characterized by a quasicategorical
universal property, namely: for any quasicategory D, the map Fun(N(C)(W ), D)→ Fun(N(C), D)
induced by N(C) → N(C)(W ) is an equivalence of quasicategories from Fun(N(C)(W ), D) to the
full sub-quasicategory of Fun(N(C), D) spanned by functors that take edges in W to equivalences
in D.

Given a relative functor F : (C1,W1) → (C2,W2), we obtain a map of nerves N(F ) : N(C1) →
N(C2). Since F (W1) ⊆ W2, this extends to a map of localizations N(F )loc : N(C1)(W1) →
N(C2)(W2).

The results of Hinich [Hin16, Mar21] show that the previously considered versions i∗1Nξ(C,W )fib

and Nc(L
H(C,W ))fib are equivalent to N(C)(W ). More precisely, given a relative category (C,W ),

there is map of simplicial sets N(C) → Nc(L
H(C,W ))fib, which extends to a map N(C)(W ) →

Nc(L
H(C,W ))fib, and this latter map is an equivalence of quasicategories. These equivalences are

natural with respect to relative functors.

Corollary 5.2. The maps N(i)loc and N(U)loc are equivalences between the quasicategorical local-
izations N(DGCat)(WDG

qe ) and N(A∞Cat)
(WA∞

qe )
.

6. The problem of fibrancy of (A∞Cat,WA∞
qe )

We conclude with a few remarks about the problem raised in Remark 4.2, namely the question
of whether (A∞Cat,WA∞

qe ) is a fibrant object in RelCat. If this were true, it would slightly simplify
some of the preceding constructions.

The main result of Meier [Mei16] is that, in order for (C,W ) to be fibrant in RelCat, it is
sufficient that (C,W ) admits the structure of a fibration category. This means that in addition to
the class of weak equivalences W , one must also specify a subcategory Fib ⊂ C of fibrations, such
that a certain list of axioms is satisfied. See [Mei16, Definition 3.1] for the precise definition.

So in order to show that (A∞Cat,WA∞
qe ) is fibrant, we would need a notion of fibration of

A∞-categories. A somewhat naive guess is the following: An A∞-functor F : A → B between
A∞-categories is said to be a fibration if the following conditions are satisfied:

(1) for every pair of objectsX,Y inA and each integer p, the first component F 1 : homp
A(X,Y )→

homp
B(FX,FY ) is a surjective map of vector spaces, and

(2) H0(F ) : H0(A)→ H0(B) is an isofibration.

We recall that an isofibration is a functor F : C → D between ordinary categories with the following
property:

• If ϕ : F (X) → Z is an isomorphism in D whose source object is in the image of F , then

there is an isomorphism ϕ̃ : X → Z̃ in C such that Fϕ̃ = ϕ.

This definition of fibration of A∞-categories is directly analogous both to the definition of fibration
of simplicially enriched categories for the Bergner model structure, and to the definition of fibration
of DG categories for the Tabuada model structure.3

The problem is now to verify the axioms (F1)–(F5) of [Mei16, Definition 3.1] using this notion of
fibration. Axioms (F1), (F2), and (F3) are straightforward (note that W and Fib both contain all

3Even so, other definitions of “fibration of A∞-categories” are possible. A less naive proposal is to take from
[LH03] the fibrations of conilpotent DG coalgebras, generalize that concept to DG cocategories somehow, and then
take the preimage of that class under the bar construction.
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isomorphisms and that all objects are fibrant). The factorization axiom (F5) follows from axiom
(F4) and the existence of path objects in A∞Cat [Dri04, Appendix D].

The trickiest axiom turns out to (F4); in the present context, it is equivalent to the assertion
that the pullback of a fibration of A∞-categories along any A∞-functor exists and is a fibration,
and also that the pullback of an acyclic fibration (fibration which is also a weak equivalence) is an
acyclic fibration. I do not know any proof of this assertion.

In fact the mere existence of such pullbacks is a nontrivial problem, because the category A∞Cat
is not complete. Indeed, the category A∞Alg of A∞-algebras (A∞-categories with a single object)
is not complete either, as was already well-appreciated by Lefèvre-Hasegawa [LH03]. See [COS19,
§1.5] for a simple counterexample. The reason is elementary: an A∞-functor or A∞-morphism of
A∞-algebras is precisely not “a map of underlying vector spaces that preserves the operations”—it
only preserves the operations up to specified homotopy. This means that the naive attempt to form
the equalizer of a parallel pair of A∞-morphisms F,G : A → B—take the equalizer of F 1 and G1

in vector spaces and then define A∞-operations on the result—fails catastrophically. Instead, one
must take the equalizer in the category of DG cocategories or DG coalgebras, and then prove that
the resulting object lies in the essential image of the bar construction.

In the case of A∞Alg, one of the main results of [LH03] is that the category of conilpotent DG
coalgebras admits a model structure such that the subcategory of fibrant objects is equivalent to
A∞Alg. As explained in [Val20], it follows that A∞Alg is a “category of fibrant objects,” implying
that it is indeed a fibration category in the sense of [Mei16], where the weak equivalences are the
A∞-quasi-isomorphisms and the fibrations are degreewise surjections.

There is one more case that deserves mention. Let O be set, and let A∞CatO be the category
whose objects are small A∞-categories with object set O, and whose morphisms are A∞-functors
that are identity on O. As stated in [COS19], the results of [LH03] apply mutatis mutandis to
this case. Thus the problem of extending the results of [LH03] to A∞Cat is the simple fact that a
functor, even if it is an equivalence, need not be a bijection on objects.
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