Weinstein manifolds	Surfaces	Legendrian surgery	Conclusion

Introduction to Fukaya Categories Lecture 3: Examples of Fukaya categories

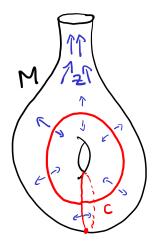
James Pascaleff

University of Illinois at Urbana-Champaign

Hausdorff Institute, 2020-10-12 Mon

Weinstein manifolds	Surfaces	Legendrian surgery	Conclusion
0000	00	O	0
Outline			

2 Surfaces



Weinstein manifolds	Surfaces	Legendrian surgery	Conclusion
●000	00	O	0
Liouville vector field			

- Let (M, ω) be an exact symplectic manifold. A Liouville form is a one form θ such that $\omega = d\theta$.
- A choice of Liouville form θ induces a Liouville vector field Z on M, by the relation θ = ω(Z, ·) = ι_Zω.
- By Cartan's magic formula, $\mathcal{L}_Z \omega = d\iota_Z \omega + \iota_Z d\omega = d\theta = \omega$.
- $\exp(tZ)_*\omega = e^t\omega$. So $(M, \omega) \cong (M, \lambda\omega)$ for $\lambda > 0$, provided Z is complete.
- In general the dynamics of Z may be complicated.
- Consider the limit set $C = \{\lim_{t \to -\infty} \exp(tZ)x \mid x \in M\}$, called the *core*.

Weinstein manifolds	Surfaces	Legendrian surgery	Conclusion
0●00	00	O	o
Weinstein manifolds	5		

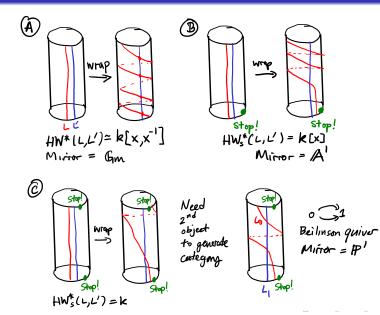
- Weinstein manifold: Assume there is a proper bounded below function φ : M → [0,∞) such that Z is gradient-like for φ. Dynamics of Z is "tamed" by the function φ.
- The core is a stratifed isotropic subset.
- The program is to try to compress all of the symplectic geometry of M"onto the core C." (Roughly like taking $\lambda \to 0$ in $(M, \lambda \omega)$.)
- Leads to microlocal sheaves on the core/skeleton. (Nadler, Zaslow, many others.)

◆□▶ ◆◎▶ ◆□▶ ◆□▶ ● □

Weinstein manifolds	Surfaces	Legendrian surgery	Conclusion
००●०		O	O
Wrapping Hamiltor	nians		

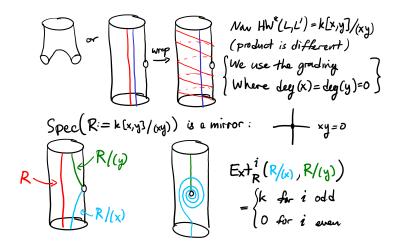
- When considering Weinstein manifolds, we often include noncompact, properly embedded exact Lagrangians L (with tameness condition at ∞).
- M has a "wrapping Hamiltonian H" (grows quadratically at ∞; analogue of geodesic flow on T*Q).
- The *wrapped Fukaya category* is defined as a type of localization of the Fukaya category with respect the flow of *H*. The *wrapped Floer cohomology* is

$$HW(L_0, L_1) = \lim_{t \to \infty} HF(\phi_H^t L_0, L_1)$$


• We can also introduce *stops*, markings that prescribe when to break off the limiting process.

Weinstein manifolds	Surfaces	Legendrian surgery	Conclusion
000●	00	O	O
Case of cotangent	bundle		

- Let Q be a closed Pin manifold. Abouzaid shows:
- The wrapped Fukaya category is generated by a cotangent fiber T_a^*Q .
- The endomorphism algebra of T_q^*Q is A_∞ equivalent to chains on the based loop space $C_{-*}(\Omega_q Q)$.
- Thus we have a complete description of the wrapped Fukaya category in terms of classical topology:


• Wrapped Fukaya category of $\mathcal{T}^*Q\cong \mathcal{C}_{-*}(\Omega_q Q)-\mathrm{mod}.$

Weinstein manifolds	Surfaces	Legendrian surgery	Conclusion
0000	●○	O	o
Cylinder = T^*S^1			

∃ _ � � � @

Weinstein manifolds	Surfaces	Legendrian surgery	Conclusion
0000	⊙●	O	O
Pair of pants			

▲□▶ ▲圖▶ ▲国▶ ▲国▶ ▲国 ● の < @

Weinstein manifolds	Surfaces	Legendrian surgery	Conclusion
0000	00	●	O
Weinstein handle at	tachment		

- We can modify a Weinstein manifold by attaching a handle (corresponds to cell attachment in topology).
- "Critical" handle is attached along an Legendrian sphere.
- Legendrian submanifolds have a Floer theory that uses similar ingredients as the Fukaya category in a different way.
- Bourgeois-Ekholm-Eliashberg show how to get the wrapped Fukaya category out of it.

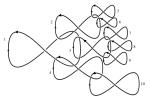
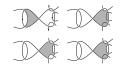



Figure 4: Lagrangian projection of Λ decorated with orientations and basepoints

(Figures from Lekili-Etgü arXiv:1502.07922)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Weinstein manifolds	Surfaces	Legendrian surgery	Conclusion
0000	00	O	•
Conclusion			

- I hope to have convinced you that Fukaya categories are a natural thing to study, if somewhat technically complicated.
- If you are an algebraist, you may not want to worry so much about the foundations of Fukaya categories.
- In some cases, particularly the Weinstein case, theoretical advances have allowed us to access the information contained in the Fukaya category more easily.

Weinstein manifolds	Surfaces	Legendrian surgery	Conclusion
0000	00	0	•
Conclusion			

- I hope to have convinced you that Fukaya categories are a natural thing to study, if somewhat technically complicated.
- If you are an algebraist, you may not want to worry so much about the foundations of Fukaya categories.
- In some cases, particularly the Weinstein case, theoretical advances have allowed us to access the information contained in the Fukaya category more easily.

Mermin-Lekili slogan

Shut up and calculate ... Fukaya categories.