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Towards categorification

Recognizing that a problem is a Lagrangian intersection
problem reveals a path towards categorification: Fukaya
categories!
Given transversely intersecting oriented Lagrangians L1, L2,
define CF (L1, L2) =

⊕
x∈L1∩L2 K · x

We need to understand the “processes” that can connect
intersection points.
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Holomorphic maps

Equip (M, ω) with a compatible almost-complex structure J.
Let (Σ, j) be a Riemann surface (2d complex manifold).
If u : Σ→ M is a map, we may formulate the
Cauchy-Riemann equation Du ◦ j = J ◦ Du.
If J is integrable (∃ holomorphic coordinates on M), then this
is a familiar notion.
If Σ has boundary ∂Σ, we may require that u : ∂Σ→ L, where
L ⊂ M is a submanifold.
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Polygons in the plane

Let P be a polygon in C
with angles παk ,
k = 1, . . . , n, αk ∈ (0, 2].
Riemann mapping theorem
=⇒ the interior of P is
biholomorphic to
D◦ = {|w | < 1}.

Theorem (Schwarz-Christoffel Formula)

The function z = F (w) that maps {|w | < 1} biholomorphically
onto P is of the form

F (w) = C

∫ w

0

n∏
k=1

(w − wk)αk−1 dw + C ′

where wk are certain points on the unit circle and C ,C ′ ∈ C.
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Boundary-punctured disks

At a vertex where αk 6∈ Z, the Schwarz-Christoffel formula has
a branch point singularity. It makes sense to extend the
domain of F to the closed disk with the points wk removed.
We call such a domain a boundary-punctured disk.
Aut(D) ∼= PSL(2,R) acts on the set of boundary punctured
disks. The quotient is the moduli space Rn.
dimRn = n − 3. R3 = pt. R2 = pt/R (unstable situation).
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Holomorphic polygons

The “process” that connects intersection points are
holomorphic polygons in M.
Consider Lagrangian submanifolds L0, . . . , Ln meeting
transversally at intersection points xi ∈ Li−1 ∩ Li , x0 ∈ Ln ∩ L0.
Let (D, {wk}) be a disk with n + 1 boundary punctures.

Definition
A holomorphic polygon in M with boundary data {Li , xi} and
domain (D, {wk}) is a map u : D \ {wk} → M such that

u is holomorphic on D◦.
limw→wk

u(w) = xi .
u maps boundary between wi and wi+1 to Li .
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What are we supposed to do with these polygons?

We want to count them.
Are there finitely many? (finite-dimensional spaces of solutions;
requires an analysis of the transversality of the moduli space;
need to characterize situtations where it is finite.)
Need to count with signs? (Yes; need extra structure for this
to work.)

If we can count them, what structure does this collection of
numbers have?

Relations come from degenerating the domain (Gromov
compactification + gluing).
Most easily packaged as an A∞ category.
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Example: 4-gon breaking into 3-gons

Consider polygons with
boundary on several straight
lines.
At non-convex corner, a slit
may form.
Eventually it breaks into
smaller polygons.
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Another degeneration: Floer breaking

Same phenomenon can
occur when lines are not
straight.
Now a “bigon” or “strip” may
break off.
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Yet another degeneration: disk breaking

It is even possible that what
breaks off is a disk (one
boundary puncture).
The broken configuration
shown here contains a
constant triangle.
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Compactification of Rd+1

w0 is the root.
Degenerations correspond to
groupings of other punctures
{wk | 1 ≤ k ≤ d}.
Same as partial
parenthesizations of d
letters.
Rd+1

= Associahedron Kd !
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Compactification of the space of maps

In general, given Lagrangians L0, . . . , Ld and intersections
x0 ∈ Ld ∩ L0 and xi ∈ Li−1 ∩ Li (1 ≤ i ≤ d), we consider maps
from polygons in Rd+1 to M with these boundary data.
As modulus of the domain varies, maps may degenerate, we
compactify the space of maps “over the associahedron.”
We must also include Floer breaking and disk breaking in the
compactification of the space of maps (even though domain
does not degenerate).

Gluing
For later arguments, it is necessary to know that every degenerate
configuration actually appears in the boundary of the main stratum.
This is among the most difficult analytical points.



Holomorphic maps Gromov compactification Floer cohomology A∞ operations Gradings and orientations

Compactification of the space of maps

In general, given Lagrangians L0, . . . , Ld and intersections
x0 ∈ Ld ∩ L0 and xi ∈ Li−1 ∩ Li (1 ≤ i ≤ d), we consider maps
from polygons in Rd+1 to M with these boundary data.
As modulus of the domain varies, maps may degenerate, we
compactify the space of maps “over the associahedron.”
We must also include Floer breaking and disk breaking in the
compactification of the space of maps (even though domain
does not degenerate).

Gluing
For later arguments, it is necessary to know that every degenerate
configuration actually appears in the boundary of the main stratum.
This is among the most difficult analytical points.



Holomorphic maps Gromov compactification Floer cohomology A∞ operations Gradings and orientations

Floer differential

Recall CF (L0, L1) =
∑

x∈L0∩L1 K · x .
This carries a boundary map ∂ that
counts holomorphic strips.
Strips have an R action; consider orbits.
Matrix element n(x , y) = count “rigid
modulo R” strips.

∂x =
∑
y

n(x , y)y

Potential issue
In this and later operations, it is possible that there are infinitely
many terms. This can be handled by using formal variables
(coefficients in Novikov field).
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∂2 = 0

∂2 counts pairs of rigid (modulo R)
strips.
This set is the boundary of the
one-dimensional (modulo R)
familes of strips.
This cobordism pairs up the terms
in ∂2. With appropriate system of
signs, they all cancel out.
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∂2 = 0 . . . unless we have disks with boundary on Li .

This does not happen in the exact situation.

A holomorphic disk u has
∫
u ω > 0. If ω = dθ and θ|L = dF for

F : L→ R, then∫
u
ω =

∫
u
dθ =

∫
∂u
θ =

∫
∂u

dF =

∫
∂∂u

F = 0.

Otherwise
We actually have to deal with the disk count. This leads to what is
called a curved A∞ structure; it includes an operation m0 with zero
inputs. We assume that there are no disks for now.
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Floer cohomology

The cohomology of the complex (CF (L0, L1), ∂) is the Floer
cohomology HF (L0, L1) of the pair L0, L1.
It is invariant under Hamiltonian deformations of Li .
If L1 and L2 are not transverse we use Hamiltonian
deformation to perturb them.

Example

For L = zero section in T ∗Q, we have HF (L, L) = H∗(Q).
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md operation

Given Lagrangians L0, L1, . . . , Ld , we aim to define a map

md : CF (Ld−1, Ld)⊗ · · · ⊗ CF (L0, L1)→ CF (L0, Ld)

by counting rigid holomorphic (d + 1) gons with boundary on
Li and punctures mapping to intersection points.
m1 is essentially ∂.
By considering the one-dimensional moduli spaces of (d + 1)
gons, we get relations involving mk for 1 ≤ k ≤ d .
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Terms in A∞ equations

Visualize a one-dimensional
componentM by mapping
to Rd+1.
Where ∂M hits ∂Rd+1, we
get a combination of mk ’s
with k > 1.
Terms involving m1 and md

appear as points of ∂M that
map to interior.
Get all possible terms in the
A∞ equations.
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Gradings and orientations

We need to fill in some gaps in the story told so far.

Dimensions
The moduli spaces of maps break up into components according to
the homotopy class of the map. How can we tell the dimension of
each component?

Grading

How to put Z grading on CF (L0, L1)? Connected to previous
question.

Orientations
Need to orient the moduli spaces to make the cobordism argument
work (unless characteristic = 2).
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Lagrangian Grassmannians

From polygon example, we see dimension has to do with
“non-convex” corners.
What is the higher-dimensional generalization of this “angle”
phenomenon?

Lagrangian Grassmannian

LGr(n) = U(n)/O(n); it has fundamental group Z, witnessed by
map det2 : U(n)/O(n)→ U(1).

Lagrangian Grassmannian bundle

For a symplectic manifold M, LGr(M)→ M is the bundle of
Lagrangian Grassmannians of the tangent spaces.
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Grading on M

Need to “measure” fundamental group of fibers of LGr(M)
consistently over M.
What to choose a map α : LGr(M)→ S1 that restricts to
each fiber as det2.
This is possible if and only if 2c1(M) = 0 in H2(M,Z). We
now assume this.

Moral
The condition 2c1(M) = 0 is a “weak Calabi-Yau” condition that is
necessary for the Fukaya category to be Z graded.
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Single Lagrangian case

Suppose that M is equipped with a grading α. Given a
Lagrangian L, we lift to L→ L̃ ⊂ LGr(M).
Pullback of α to L defines map αL : L→ S1, or class
µL ∈ H1(L,Z), called the Maslov class of L.
M = moduli space of holomorphic maps (Σ, ∂Σ)→ (M, L) in
some fixed homotopy class β ∈ π2(M, L).

Dimension = index of linearized operator (Riemann-Roch)

dimM = nχ(Σ) + µL(∂β). (Involves µL.)

Orientation ofM
w1(M) = T (w2(L)) + (T (µL)− 1)U(µL). (Involves w2(L) and µL.)
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Polygon case

The case of polygons with boundary on L0, . . . , Ld is more
complicated since we have boundary punctures.
Still, the key quantities are µLi and w2(Li ).
The easiest solution is to assume that these classes vanish.

Graded Lagrangians

If µL = 0, then αL : L→ S1 admits a lift α̃L : L→ R. Such a lift is
called a grading on L. The shift functor [1] changes this choice.

(S)pin structure

If w2(L) = 0, then L admits a Pin structure. Easier: if w1(L) = 0
also, then L admits an orientation and a Spin structure.
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Polygon case

Our “Lagrangian branes” are Lagrangians equipped with
chosen grading and Pin structure.
To each we intersection point x of such we may assign an
absolute index i(x) ∈ Z. This gives CF (Li , Lj) a Z grading.
The dimension of the space of polygons with inputs x1, . . . , xd
and output x0 is

i(x0)− i(x1)− · · · − i(xd) + d − 2

Counting zero dimensional moduli spaces forces
i(x0) =

∑
i(xi ) + (2− d). So md has degree 2− d .
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Full A∞ equations

Taking signs into account requires a slight redefinition of
CF (Li , Lj). I won’t spell this out here.
Finally we have the full A∞ structure:
md : CF (Ld−1, Ld)⊗ · · · ⊗ CF (L0, L1)→ CF (L0, Ld)[2− d ]∑

k,`

(−1)†md−k+1(xd , . . . , xk+`+1,mk(xk+`, . . . , x`+1), x`, . . . , x1) = 0

† = i(x1) + · · ·+ i(x`)− ` (Convention in Seidel’s book.)

This is an A∞ category with a shift functor [1]. We can then
apply any formal enlargement we want: triangulated envelope,
idempotent completion, localization, Ind-completion, etc.
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