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Symplectic structures

Let M be a manifold of dimension 2n.

Definition

A symplectic form is a two-form ω ∈ Ω2(M) which is
Nondegenerate: X 7→ ω(X , ·) is an iso TM → T ∗M.
Closed: dω = 0.

Example

Q a manifold; M = T ∗Q the (total space of the) cotangent bundle.
With coordinates qi on Q, dual coordinates pi on cotangent fiber,
the 1-form θ =

∑
i pi dq

i is coordinate-independent. Take ω = dθ.

Example

M ⊂ PN a quasi-projective variety, ω restriction of Fubini-Study
form.
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History: Classical Mechanics

T ∗Q is the phase space

qi is a "generalized coordinate", and pi is the "canonically
conjugate momentum."

Dynamics

Dynamics is generated by a function H(q, p) (Hamiltonian = total
energy) by the ODE {q̇i = ∂H/∂pi , ṗi = −∂H/∂qi}. In modern
terms this ODE is the flow of the vector field XH satisfying
ω(·,XH) = dH.

Canonical Transformation = Symplectomorphism

Old: A canonical transformation preserves
∑

pi dq
i up to a total

differential. New: A symplectomorphism preserves ω.
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Lagrangian submanifolds

(M, ω) a symplectic manifold of dimension 2n.

Definition
A submanifold L ⊂ M is isotropic if ω|L = 0. It is Lagrangian if in
addition dim L = n.

Examples in M = T ∗Q

The zero section L0 = {all pi = 0}. For fixed q ∈ Q, the cotangent
fiber T ∗qQ. For a smooth submanifold N ⊂ Q, the conormal bundle
T ∗NQ = {(q, p) | q ∈ N and (

∑
pi dq

i )|TqN = 0}.

Importance for us
Lagrangian submanifolds are the natural boundary conditions for
processes that take place in a symplectic manifold.
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Gallery
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Infinitesimal (tangent space) symplectic geometry

Consider Cn with standard Hermitian form 〈z ,w〉 =
∑

i z̄iwi .
Write as 〈z ,w〉 = b(z ,w) +

√
−1ω(z ,w), with b, ω being R

valued, R linear forms; b is symmetric and ω is
skew-symmetric.
Then (Cn, ω) is a model of the tangent space at any point of a
symplectic manifold.
GL(n,C) = AutC(Cn), Sp(2n) = AutR(Cn, ω),
U(n) = AutC(Cn, b + iω).

Consequential observation

The groups Sp(2n), U(n), and GL(n,C) are mutually homotopy
equivalent.

Consequence
Homotopy theory of symplectic vector bundles is the same as that
of unitary or complex vector bundles. (Theory of Chern classes.)
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Infinitesimal (tangent space) Lagrangian submanifolds

A linear subspace L ⊂ Cn with dimR L = n is Lagrangian if
ω|L = 0.
Every Lagrangian subspace is equivalent under the action of
U(n) ⊂ Sp(2n) to the standard Rn ⊂ Cn. The stabilizer is
O(n).
Thus the set of Lagrangian subspaces, or Lagrangian
Grassmannian, is LGr(n) ∼= U(n)/O(n).

Fact

The map det2 : U(n)/O(n)→ U(1) is an isomorphism on π1.
Hence H1(LGr(n),Z) ∼= Z. This leads to the theory of Maslov
classes and indices.
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Structures on the tangent bundle

(M, ω) a symplectic manifold. The form ω reduces the structure
group of TM to Sp(2n). Hence structure group of TM can also be
reduced to GL(n,C) or U(n).

Definition
An almost-complex structure (ACS) on M is J : TM → TM such
that J2 = −Id . An ACS J is compatible with ω if
g(X ,Y ) = ω(X , JY ) is a pos. def. symmetric form.

Theorem
The space of almost complex strutures compatible with a given
symplectic form is contractible.
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Local classification

Regard the ball B2n(r) ⊂ Cn as a symplectic manifold with the
standard ω.

Darboux Theorem
Any point in a symplectic manifold has a neighborhood
symplectomorphic to (B2n(r), ω).

Weinstein Theorem
A closed Lagrangian submanifold L ⊂ M has a tubular
neighborhood symplectomorphic to a tubuluar neighborhood of the
zero section in T ∗L.

Lesson
Local picture is always the same; interesting phenomena in the
large.
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Exactness

Since dω = 0, there is a class [ω] ∈ H2
dR(M). Since ω is

nondegenerate, ωn is a volume form.

Definition
A symplectic manifold is exact if [ω] = 0, i.e., ω = dθ.

Proposition
An exact symplectic manifold is never closed. Proof: If closed,
0 <

∫
ωn =

∫
d(θ ∧ ωn−1) = 0.

Examples

Cotangent bundle T ∗Q with θ =
∑

pi dq
i . Affine varieties. Many

other constructions.
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Exact Lagrangians

Suppose (M, ω = dθ) is exact symplectic (specific θ chosen), and
L ⊂ M is Lagrangian. Then d(θ|L) = ω|L = 0, so there is a class
[θ|L] ∈ H1

dR(L) (depends on choice of θ).

Definition
L is exact if [θ|L] = 0, that is, θ|L = dF for some F : L→ R.

Slogan
Exact Lagrangians in exact symplectic manifolds are easier to
understand, particularly when stricter versions of exactness are
imposed (Liouville manifolds, Weinstein manifolds).

Why easier?
For λ > 0, rescaling ω 7→ λω is a symmetry of the theory.
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Let’s intersect

(M, ω) oriented by ωn > 0. If L1, L2 are oriented Lagrangians, then
since dim Li = n = (1/2) dimM, we have an oriented intersection
number L1 · L2.

Example

M = T ∗Q, f : Q → R function. L1 = zero section, L2 = Γ(df ) =
graph of df . Then L1 ∩ L2 = critical points of f . With appropriate
orientations L1 · L2 = χ(Q).
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Lagrange multipliers

Problem
To find the maximum/minimum of a function f : Rn → R on a
simplex ∆ = {x | xi ≥ 0 and

∑
xi ≤ 1}.

Undergraduate brain
Find critical points in interior, then apply Lagrange multiplier
method to each stratum (# of multipliers = codim), testing
vertices last.

Galaxy brain
Let S = decomposition of ∆ into strata, let T ∗SRn = union of the
conormals to the strata. Take T ∗SRn ∩ Γ(df ).
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Lagrange multipliers picture
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Less obvious example (historically important)

Let Y be an oriented integral homology 3-sphere. Consider
irreps π1(Y )→ SU(2) up to SU(2) conjugacy. The Casson
invariant λ(Y ) is a signed count of the classes.

Given a Heegaard splitting Y = M1 ∪Σ M2, consider
R(Mi ) ⊂ R(Σ), where R(·) denotes the variety of conjugacy
classes of irreps of π1 → SU(2).

Then λ(Y ) = (−1)g

2 R(M1) · R(M2).

Atiyah-Bott
This is a Lagrangian intersection problem.
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Let’s categorify

Recognizing that a problem is a Lagrangian intersection
problem reveals a path towards categorification: Fukaya
categories!
Given transversely intersecting oriented Lagrangians L1, L2,
define CF (L1, L2) =

⊕
x∈L1∩L2

K · x

Issue 1: Grading

We have a Z/2 grading by sign of intersections. Then trivially
χ(CF (L1, L2)) = L1 · L2. We would rather have a Z grading if
possible (relates to Maslov indices).

Issue 2: Invariance and categorical structure
Where is this going to come from?
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Towards categorification

We need to understand the “processes” that can connect
intersection points.

Algebraically

Certain maps mn :
⊗n

i=1 CF (Li−1, Li )→ CF (L0, Ln).

Geometrically

Holomorphic maps from Riemann surfaces to (M, J), with
boundary on various Lagrangians.

Recursive structure
Arises from geometric degenerations, implies relations between the
mn (A∞ equations).
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