Manifolds	Tangential and local structure	Cohomological properties

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Introduction to Fukaya Categories Lecture 1: Basics of symplectic geometry for Fukaya categories

James Pascaleff

University of Illinois at Urbana-Champaign

Hausdorff Institute, 2020-10-07 Wed

Manifolds	Tangentia

angential and local structure

 $\underset{OO}{\text{Cohomological properties}}$

Lagrangian intersections

Outline

- 2 Tangential and local structure
- 3 Cohomological properties

Manifolds	Tangential	and	local	structure
0000				

Lagrangian intersections

Symplectic structures

Let M be a manifold of dimension 2n.

Definition

A symplectic form is a two-form $\omega \in \Omega^2(M)$ which is

• Nondegenerate: $X \mapsto \omega(X, \cdot)$ is an iso $TM \to T^*M$.

• Closed:
$$d\omega = 0$$
.

Example

Q a manifold; $M = T^*Q$ the (total space of the) cotangent bundle. With coordinates q^i on Q, dual coordinates p_i on cotangent fiber, the 1-form $\theta = \sum_i p_i dq^i$ is coordinate-independent. Take $\omega = d\theta$.

Example

 $M \subset \mathbb{P}^N$ a quasi-projective variety, ω restriction of Fubini-Study form.

1anifolds	Tangential	and	local	structure	Cohomolog
000					

Lagrangian intersections

History: Classical Mechanics

T^*Q is the phase space

 q^i is a "generalized coordinate", and p_i is the "canonically conjugate momentum."

Dynamics

Dynamics is generated by a function H(q, p) (Hamiltonian = total energy) by the ODE $\{\dot{q}^i = \partial H/\partial p_i, \dot{p}_i = -\partial H/\partial q^i\}$. In modern terms this ODE is the flow of the vector field X_H satisfying $\omega(\cdot, X_H) = dH$.

Canonical Transformation = Symplectomorphism

Old: A canonical transformation preserves $\sum p_i dq^i$ up to a total differential. New: A symplectomorphism preserves ω .

Manifolds 00●0	Tangential and local structure	Cohomological properties	Lagrangian intersections
Lagrang	ian submanifolds		

 (M, ω) a symplectic manifold of dimension 2n.

Definition A submanifold $L \subset M$ is *isotropic* if $\omega | L = 0$. It is *Lagrangian* if in addition dim L = n.

Examples in $M = T^*Q$

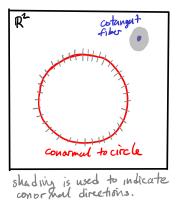
The zero section $L_0 = \{ all \ p_i = 0 \}$. For fixed $q \in Q$, the cotangent fiber T_q^*Q . For a smooth submanifold $N \subset Q$, the conormal bundle $T_N^*Q = \{(q, p) \mid q \in N \text{ and } (\sum p_i \ dq^i) | _{T_qN} = 0 \}$.

Importance for us

Lagrangian submanifolds are the natural boundary conditions for processes that take place in a symplectic manifold.

Manifolds 000●	Tangential and local structure	Cohomological properties
Gallery		

751 cotangent fiber o-section graph of closed 1-form In 2 dim, any curve is lagrangion.



Manifolds 0000	Tangential and local structure ●000	Cohomological properties	Lagrangian intersections
Infinitesin	nal (tangent space)	symplectic geom	etry

- Consider \mathbb{C}^n with standard Hermitian form $\langle z, w \rangle = \sum_i \overline{z}_i w_i$. Write as $\langle z, w \rangle = b(z, w) + \sqrt{-1}\omega(z, w)$, with b, ω being \mathbb{R} valued, \mathbb{R} linear forms; b is symmetric and ω is skew-symmetric.
- Then (Cⁿ, ω) is a model of the tangent space at any point of a symplectic manifold.

•
$$\operatorname{GL}(n, \mathbb{C}) = \operatorname{Aut}_{\mathbb{C}}(\mathbb{C}^n), \operatorname{Sp}(2n) = \operatorname{Aut}_{\mathbb{R}}(\mathbb{C}^n, \omega),$$

 $\operatorname{U}(n) = \operatorname{Aut}_{\mathbb{C}}(\mathbb{C}^n, b + i\omega).$

Consequential observation

The groups Sp(2n), U(n), and $\text{GL}(n, \mathbb{C})$ are mutually homotopy equivalent.

Consequence

Homotopy theory of symplectic vector bundles is the same as that of unitary or complex vector bundles. (Theory of Chern classes.)

- A linear subspace $L \subset \mathbb{C}^n$ with dim_{\mathbb{R}} L = n is Lagrangian if $\omega|_L = 0$.
- Every Lagrangian subspace is equivalent under the action of $U(n) \subset Sp(2n)$ to the standard $\mathbb{R}^n \subset \mathbb{C}^n$. The stabilizer is O(n).
- Thus the set of Lagrangian subspaces, or Lagrangian Grassmannian, is LGr(n) ≃ U(n)/O(n).

Fact

The map det² : U(n)/O(n) \rightarrow U(1) is an isomorphism on π_1 . Hence $H^1(\mathrm{LGr}(n),\mathbb{Z})\cong\mathbb{Z}$. This leads to the theory of *Maslov* classes and indices.

Manifolds 0000	Tangential and local structure 00●0	Cohomological properties	Lagrangian intersections
Structure	es on the tangent bu	undle	

 (M, ω) a symplectic manifold. The form ω reduces the structure group of TM to $\operatorname{Sp}(2n)$. Hence structure group of TM can also be reduced to $\operatorname{GL}(n, \mathbb{C})$ or $\operatorname{U}(n)$.

Definition

An almost-complex structure (ACS) on M is $J : TM \to TM$ such that $J^2 = -Id$. An ACS J is compatible with ω if $g(X, Y) = \omega(X, JY)$ is a pos. def. symmetric form.

Theorem

The space of almost complex strutures compatible with a *given* symplectic form is contractible.

Manifolds 0000	Tangential and local structure 000●	Cohomological properties	Lagrangian intersections
Local cl	assification		

Regard the ball $B^{2n}(r) \subset \mathbb{C}^n$ as a symplectic manifold with the standard ω .

Darboux Theorem

Any point in a symplectic manifold has a neighborhood symplectomorphic to $(B^{2n}(r), \omega)$.

Weinstein Theorem

A closed Lagrangian submanifold $L \subset M$ has a tubular neighborhood symplectomorphic to a tubuluar neighborhood of the zero section in T^*L .

Lesson

Local picture is always the same; interesting phenomena in the large.

Manifolds 0000	Tangential and local structure	Cohomological properties ••	Lagrangian intersections
Exactnes	S		

Since $d\omega = 0$, there is a class $[\omega] \in H^2_{dR}(M)$. Since ω is nondegenerate, ω^n is a volume form.

Definition

A symplectic manifold is *exact* if $[\omega] = 0$, i.e., $\omega = d\theta$.

Proposition

An exact symplectic manifold is never closed. Proof: If closed, $0 < \int \omega^n = \int d(\theta \wedge \omega^{n-1}) = 0.$

Examples

Cotangent bundle T^*Q with $\theta = \sum p_i dq^i$. Affine varieties. Many other constructions.

Manifolds 0000	Tangential and local structure	Cohomological properties ○●	Lagrangian intersections
Exact La	grangians		

Suppose $(M, \omega = d\theta)$ is exact symplectic (specific θ chosen), and $L \subset M$ is Lagrangian. Then $d(\theta|_L) = \omega|_L = 0$, so there is a class $[\theta|_L] \in H^1_{dR}(L)$ (depends on choice of θ).

Definition

L is exact if $[\theta|_L] = 0$, that is, $\theta|_L = dF$ for some $F : L \to \mathbb{R}$.

Slogan

Exact Lagrangians in exact symplectic manifolds are easier to understand, particularly when stricter versions of exactness are imposed (Liouville manifolds, Weinstein manifolds).

Why easier?

For $\lambda > 0$, rescaling $\omega \mapsto \lambda \omega$ is a symmetry of the theory.

Manifolds 0000	Tangential and local structure	Cohomological properties	Lagrangian intersections ●00000
Let's int	ersect		

 (M, ω) oriented by $\omega^n > 0$. If L_1, L_2 are oriented Lagrangians, then since dim $L_i = n = (1/2) \dim M$, we have an oriented intersection number $L_1 \cdot L_2$.

Example

 $M = T^*Q$, $f : Q \to \mathbb{R}$ function. L_1 = zero section, $L_2 = \Gamma(df) =$ graph of df. Then $L_1 \cap L_2$ = critical points of f. With appropriate orientations $L_1 \cdot L_2 = \chi(Q)$.

Manifolds	Tangential and	local	structure

Lagrangian intersections $0 \bullet 0000$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Lagrange multipliers

Problem

To find the maximum/minimum of a function $f : \mathbb{R}^n \to \mathbb{R}$ on a simplex $\Delta = \{x \mid x_i \ge 0 \text{ and } \sum x_i \le 1\}.$

Manifolds	Tangential	and	local	structure

Lagrangian intersections

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Lagrange multipliers

Problem

To find the maximum/minimum of a function $f : \mathbb{R}^n \to \mathbb{R}$ on a simplex $\Delta = \{x \mid x_i \ge 0 \text{ and } \sum x_i \le 1\}.$

Undergraduate brain

Find critical points in interior, then apply Lagrange multiplier method to each stratum (# of multipliers = codim), testing vertices last.

Manifolds	Tangential	and	local	structure

Lagrangian intersections

Lagrange multipliers

Problem

To find the maximum/minimum of a function $f : \mathbb{R}^n \to \mathbb{R}$ on a simplex $\Delta = \{x \mid x_i \ge 0 \text{ and } \sum x_i \le 1\}.$

Undergraduate brain

Find critical points in interior, then apply Lagrange multiplier method to each stratum (# of multipliers = codim), testing vertices last.

Galaxy brain

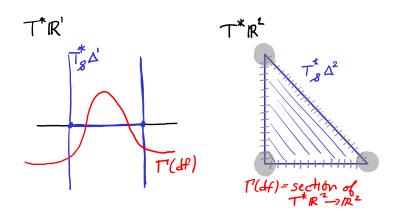
Let S = decomposition of Δ into strata, let $T^*_{S}\mathbb{R}^n$ = union of the conormals to the strata. Take $T^*_{S}\mathbb{R}^n \cap \Gamma(df)$.

Manifolds Tangential and local structure 0000 0000 $\underset{OO}{\text{Cohomological properties}}$

Lagrangian intersections 000000

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Lagrange multipliers picture



- Let Y be an oriented integral homology 3-sphere. Consider irreps π₁(Y) → SU(2) up to SU(2) conjugacy. The Casson invariant λ(Y) is a signed count of the classes.
- Given a Heegaard splitting $Y = M_1 \cup_{\Sigma} M_2$, consider $\mathcal{R}(M_i) \subset \mathcal{R}(\Sigma)$, where $\mathcal{R}(\cdot)$ denotes the *variety* of conjugacy classes of irreps of $\pi_1 \to SU(2)$.

A D > 4 回 > 4 回 > 4 回 > 1 回 > 1 の Q Q

• Then
$$\lambda(Y) = \frac{(-1)^g}{2} \mathcal{R}(M_1) \cdot \mathcal{R}(M_2).$$

- Let Y be an oriented integral homology 3-sphere. Consider irreps π₁(Y) → SU(2) up to SU(2) conjugacy. The Casson invariant λ(Y) is a signed count of the classes.
- Given a Heegaard splitting Y = M₁ ∪_Σ M₂, consider *R*(M_i) ⊂ *R*(Σ), where *R*(·) denotes the *variety* of conjugacy classes of irreps of π₁ → SU(2).

• Then
$$\lambda(Y) = \frac{(-1)^g}{2} \mathcal{R}(M_1) \cdot \mathcal{R}(M_2).$$

Atiyah-Bott

This is a Lagrangian intersection problem.

Manifolds 0000	Tangential and local structure	Cohomological properties	Lagrangian intersections
Let's ca	tegorify		

- Recognizing that a problem is a Lagrangian intersection problem reveals a path towards categorification: Fukaya categories!
- Given transversely intersecting oriented Lagrangians L₁, L₂, define CF(L₁, L₂) = ⊕<sub>x∈L₁∩L₂ K ⋅ x
 </sub>

Issue 1: Grading

We have a $\mathbb{Z}/2$ grading by sign of intersections. Then trivially $\chi(CF(L_1, L_2)) = L_1 \cdot L_2$. We would rather have a \mathbb{Z} grading if possible (relates to Maslov indices).

Issue 2: Invariance and categorical structure

Where is this going to come from?

lanifolds	Tangential	and	local	structure

Lagrangian intersections

Towards categorification

We need to understand the "processes" that can connect intersection points.

Algebraically

Certain maps
$$m_n: \bigotimes_{i=1}^n CF(L_{i-1},L_i) \to CF(L_0,L_n).$$

Geometrically

Holomorphic maps from Riemann surfaces to (M, J), with boundary on various Lagrangians.

Recursive structure

Arises from geometric degenerations, implies relations between the m_n (A_{∞} equations).