
PERTURBATIVE QUANTIZATION AND MASTER EQUATION (AFTER
COSTELLO)

JAMES PASCALEFF

These are notes for talks in the reading group on the “Higher Genus B-Model and Quan-
tization of BCOV Theory” at the Institute for Advanced Study in the Spring term of 2017.
The material comes from the book Renormalization and Effective Field Theory by Kevin
Costello [Cos11]. At some points I have added commentary that helped me to understand
the motivation or context. The book of Folland [Fol08], as well as the articles of Huang
[Hua13] and in particular Polchinski [Pol84] were helpful in understanding renormalization.

1. Perturbative quantization

1.1. Action functional. We begin with a classical field theory: There is a spacetime man-
ifold M , and a space of field configurations

(1) B = Γ(M,E)

where, as is commonly the case, the fields are sections of a vector bundle E → M . In the
classical theory, the physics is described by PDE that we impose on φ ∈ B, such as the wave
equation or Maxwell’s equations. We assume that these PDE are variational, meaning that
there is an action functional S(φ) such that the classical field equations are equivalent to the
vanishing of the variational or Euler-Lagrange derivative,

(2)
δS

δφ
= 0.

This only makes sense if the action S is a local functional ; this means that S is the integral
of a Lagrangian density,

(3) S(φ) =

∫
M

L(J (r)(φ)).

Here J (r)(φ) denotes the r-jet of φ, and L is map from r-jets of sections of E to densities
on M , with the property that, at each x ∈M , the value of the integrand at x depends only
on the r-jet of φ at this same point x. By way of contrast, a nonlocal functional would be
something like

(4)

∫
R
φ(x)φ(x+ 1) dx,

since the integrand at x depends not only on φ(x) but also the value of φ at the distinct
point x+ 1.

1.2. Perturbation theory. A way to quantize our classical field theory (B, S) is as follows.
Begin by breaking the classical action S into its quadratic and higher-order parts,

(5) S(φ) = Squad(φ) + I(φ),
1
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where Squad(φ) is quadratic with respect to φ ∈ B, and I is of degree at least 3. (The
assumption that there is no constant term is harmless, and the assumption that there is no
linear term means that φ ≡ 0 does satisfy the Euler-Lagrange equations, that is, φ ≡ 0 is a
critical point of S.)

The functional Squad describes a free theory ; in this theory the fields evolve by linear PDE.
The addition of the term I describes the interaction, which makes the theory “interesting.”
One version of perturbation theory involves first quantizing the free theory (B, Squad), and
then deforming in by introducing the “small” interaction I. The quantization of a free
theory can be made completely mathematically rigorous using the tools of functional analysis
developed in the 20th century; the introduction of the interaction is a different story.

Let us pose the problem this way: we want to compute the partition function of our
interacting theory,

(6) Z =

∫
B

Dφ eS(φ)/~,

(regarding the phase of the exponent: I am using a Euclidean action with negative-definite
quadratic part). This is an infinite-dimesional functional integral, but it will guide us to our
answers. The first thing to do is use our decomposition quadratic part and interaction, and
then expand the exponential of the interaction,

(7) Z =

∫
B

Dφ eSquad(φ)/~eI(φ)/~ =
∞∑
n=0

1

n!

∫
B

Dφ eSquad(φ)/~(I(φ)/~)n

Thus we must compute the integral of I(φ)n agains the Gaussian measure Dφ eSquad(φ)/~.
There are combinatorial tricks for doing this, which lead to an expression for this integral
in terms of Feynman diagrams. I won’t describe these diagrams now because they are a bit
different than the class of diagrams we will actually use, and also because this diagrammatic
process leads to integrals that are still divergent. This is one way of formulating the problem
that the renormalization process was invented to solve.

1.3. Effective theories. A modern point of view on renormalization is that we simply
cannot expect a quantum theory to be described by a local action functional S(φ), at least
not in so direct a way as suggested by Equation (6). Another slogan one comes upon is that
field theory has infinitely degrees of freedom (as opposed to finite-dimensional mechanics),
and that the divergences of quantization arise because of the “piling-up” of contributions
from all of these degrees of freedom—so, if we can find a way to only consider finitely many
degrees of freedom at a time, we can get finite answers. This leads one to consider effective
theories that describe the physics at certain scales, either at lengths greater than some length
threshold, or below some energy threshold.

The theories at different length scales should be related to one another. Consider the
following picture:
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The horizontal direction represents length scales. The top bar corresponds to the scale L
effective theory: the phenomena whose characteristic scale is below L are hidden in the effec-
tive theory, while phenomena at scales above L are observable. The bottom bar represents a
similar situation, but where we consider the effective theory at some longer scale L′. When
L < L′, the scale L effective theory should determine the scale L′ effective theory: in this
passage we must “hide” (“integrate out”) all of the phenomena between L and L′. This is
called the renormalization group flow. (Although the word “group” is used, my understand-
ing is that it is only a semigroup in general. The passage from L to L′ with L < L′ involves
a loss of information—so it is possible. To reconstruct a scale L theory from the theory at
scale L′ is not always possible.)

Slogans aside, here is what we will do: fix a free theory (B, Squad), and consider only
interactions that deform this free theory. As an example one could take a single real scalar
field on a compact Riemanninan manifold M ,

(8) φ ∈ C∞(M) = B,

with quadratic action

(9) Squad(φ) = −
∫
M

φ(∆ +m2)φ

where ∆ is the nonnegative Laplacian associated to the Riemannian metric.

Let O(B) = Ŝym
∗
(B∨) be the completed symmetric algebra of the dual space B∨. We

regard O(B) as the space of functionals on B; note that these functionals are allowed to be
non-local. We also consider the formal series O(B)[[~]] and O(B)+[[~]], where the superscript
+ means that we only consider functionals that are at least cubic modulo ~ (more on this
condition later).

We will now define the concept of a perturbative effective quantum field theory (or theory
for short) that is a perturbation of the given free theory (B, Squad).

1.3.1. Data. The data of a theory is a collection

(10) I[L] ∈ O+(B)[[~]], 0 < L <∞

of formal series of functionals, at least cubic modulo ~, indexed by real numbers L ∈ (0,∞).
The index L is called the length scale, and the functional I[L] is called the scale L effective
interaction.
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1.3.2. Conditions. The data I[L] are required to satisfy two conditions. First, the functionals
I[L] must be related for different values of L by the renormalization group equation (RGE)

(11) I[L′] = W (P (L,L′), I[L]).

Second, the functionals I[L] are required to be asymptotically local as L→ 0.
Thus, to complete the definition of a perturbative effective quantum field theory, it remains

to define the function W , the operator P (L,L′), and the notion of asymptotic locality.

1.3.3. The renormalization group equation. This is the real core of the definition. The func-
tion W (P, I) takes two arguments. The first is an element P ∈ Sym2 B and is called the
propagator. The second is a functional I ∈ O(B)[[~]]. The value of W (P, I) is another such
functional, and it is defined as a sum of Feynman graphs. It will be helpful to see the figure
at [Cos11, p. 36, fig. 1]. We begin by decomposing

(12) I =
∑
i,k≥0

~iIi,k, Ii,k ∈ Symk(B∨).

The index i counts the power of ~ and is called the internal loop number, and the index k
counts the homogeneous degree or arity. The graphs we consider have vertices of any valency
and any number of loops and external edges. Given a graph, at each vertex of valence k, we
choose Ii,k for some i at put it at the vertex. At each internal edge, we put P . Call such
a decorated graph Γ. By pairing P with the inputs of the vertex functionals Ii,k, we get a
functional whose arity is equal to the number of external edges of the graph; call it wΓ(P, I).
A graph so decorated also has a total loop number, which is number of loops in the graph
plus the sum of the internal loop numbers of the vertices. We then set

(13) W (P, I) =
∑
i,k≥0

~iWi,k(P, I),

where Wi,k(P, I) is the sum of wΓ(P, I)/|Aut(Γ)| as Γ ranges over all isomorphism classes
decorated graphs with total loop number i and k external edges.

1.3.4. Propagator. We need to define the specific propagator P (L,L′) ∈ Sym2 B that is
used in the renormalization group equation. This is the only point in the definition of
a perturbative effective theory where the given free theory Squad enters. We will define
P (L,L′) for the free scalar field and refer to Costello for the general definition [Cos11,
pp. 71–72, Definition 13.1.1]. Recall that in this case we have

(14) Squad(φ) = −
∫
M

φ(∆ +m2)φ,

where ∆ is the nonnegative Riemannian Laplacian. The propagator is built from the elliptic
theory of the operator ∆ + m2. Since M is a compact manifold, we have a collection of
eigenvalues

(15) m2 = λ0 ≤ λ1 ≤ λ2 ≤ · · ·

and an orthonormal basis {φn}n≥0 of L2(M) consisting of eigenfunctions,

(16) (∆ +m2)φn = λnφn.
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We then let Kt ∈ Sym2 B = Sym2C∞(M) be the heat kernel

(17) Kt(x, y) =
∞∑
n=0

e−λntφn(x)⊗ φn(y).

As long as t > 0, Kt(x, y) can be interpreted as a smooth function1 on M ×M , while at
t = 0 (which we exclude) it becomes the delta distribution along the diagonal in M ×M .
Now given two positive numbers L and L′, define

(18) P (L,L′) =

∫ L′

L

Kt dt ∈ Sym2 B,

and this is the propagator we use in the renormalization group equation.
Note that if we set L = 0, then P (0, L′) is a parametrix for the operator ∆ + m2. Let us

emphasize that we are excluding this case: P (0, L′) is not a smooth function on M ×M ,
it is a distribution. If we start putting P (0, L′) in our Feynman diagrams we will precisely
reproduce the UV divergences that frustrated the development of quantum field theory until
the Nobel Prize-winning work of Feynman, Schwinger, and Tomonaga.

1.3.5. Asymptotic locality. The condition of asymptotic locality means that the effective
interactions I[L] have an asymptotic expansion as L→ 0 in terms of local functionals. The
condition is that, for each i ≥ 0, k ≥ 0, and r ≥ 0 there is a function gi,k,r(L) ∈ C∞((0,∞))
and a local functional Φi,k,r such that for every i and k, we have

(19) Ii,k[L] ∼
∑
r≥0

gi,k,r(L)Φi,k,r.

The asymptotic equivalence symbol ∼ means that there is a sequence of numbers dR indexed
by R ≥ 0 such that limR→∞ dR =∞ and such that for every a ∈ B, and every R ≥ 0,

(20) lim
L→0

L−dR

(
Ii,k[L](a)−

R∑
r=0

gi,k,r(L)Φi,k,r(a)

)
= 0.

This completes the definition of a perturbative effective quantum field theory.

1.3.6. Remark on reversibility of RGE. We remarked above that the renormalization group
may only be a semigroup in general. But note the following two facts regarding the renor-
malization function W :

(1) W (0, I) = I,
(2) W (P1,W (P2, I)) = W (P1 + P2, I).

Thus the inverse of the operation W (P (L,L′), ·) is just W (−P (L,L′), ·), and so the renor-
malization group equation for L < L′,

(21) I[L′] = W (P (L,L′), I[L]),

is invertible. Thus, according to our definition, the scale L effective interaction I[L] for
any single value of L determines I[L] for all other values of L. Put another way, all of the
effective theories contain the same amount of information.

Polchinski [Pol84] has remarked on this fact: it seems to be an artifact of our restriction
to the perturbative regime. Namely, given a theory at some scale L > 0, it makes sense to

1The clarification of the sense in which one can say C∞(M ×M) ∼= C∞(M)⊗ C∞(M) is the subject of
Costello’s appendix on nuclear spaces.
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calculate the effective interaction at an arbitrarily small length scale ε as a power series in
the perturbation parameter, which for us is ~. If, hypothetically, there is some scale ` at which
the continuum structure of spacetime breaks down into a lattice, we can still compute this
power series at scales ε < `, but presumably this series will have “bad” analytic properties.
Since the present discussion is in terms of formal power series, we won’t consider this further.

1.4. Main theorems. Now we can state the main theorems that provide a classication
of effective theories. Fix a free theory (B, Squad), for example the scalar field theory B =
C∞(M), Squad(φ) = −

∫
M
φ(∆ + m2)φ. We consider (perturbative effective quantum field)

theories deforming (B, Squad).
Denote by T(n) the set of theories that are defined modulo ~n+1. Denote by T(∞) the set

of theories that defined to all orders. By definition, T(∞) = limT(n).

Theorem 1. The projection T(n+1) → T(n) canonically has the structure of a principal bundle
for the abelian group Oloc(B) of local functionals. Also, T(0) is canonically isomorphic to the
abelian group O+

loc(B) of local functionals that are at least cubic.

Theorem 2. There are noncanonical bijections

T(n) ←→ O+
loc(B)[~]/(~n+1)(22)

T(∞) ←→ O+
loc(B)[[~]](23)

where on the right-hand sides, we are considering local functionals that are at least cubic
modulo ~.

1.4.1. General remarks. It is clear that Theorem 1 implies Theorem 2. One can simply
choose sections of all of the maps T(n+1) → T(n), which clearly exist since the fibers are
contractible. However, the strategy of proof is to first prove Theorem 2 by constructing a
noncanonical bijection depending on a certain auxiliary datum, and then deducing Theorem
1 by analyzing the dependence on this auxiliary datum.

1.4.2. Auxiliary datum: “Renormalization Scheme”. A more detailed version of Theorem 2
says that the bijections are induced by a choice of what is called a renormalization scheme.
This use of the term “renormalization” is to be distinguished from the renormalization group
equation.

You have probably heard that the renormalization process involves “subtracting off infini-
ties” and introducing “counterterms.” Well, the proof of Theorem 2 is where that happens.
The point is that, while the renormalization group equation allows us to pass between dif-
ferent positive length scales, a local functional lives at length scale L = 0, as interactions
can only happen at points. Given a local functional I, we can’t get into the effective theory
game unless we can pass from L = 0 to some positive value of L. The natural thing to do
would be to try

(24) I[L] = W (P (0, L), I)

but as we have said, the whole point is that this expression doesn’t make sense. Instead, we
introduce a counterterm ICT(ε) such that

(25) I[L] = lim
ε→0

W (P (ε, L), I − ICT(ε))

exists. For a given I, there are many counterterms ICT(ε) that have this property, and they
give different effective interactions I[L]. The renormalization scheme is a precise recipe for
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constructing the counterterm ICT(ε) from I. It can be encoded as a choice of a complement,
inside C∞((0,∞)), to the subspace of functions whose limit at zero exists.

The process for constructing the counter terms goes something like this: First consider
W (P (ε, L), I) for small ε. This expression has no reason to be meaningful because all phe-
nomena below scale ε are simply omitted rather properly hidden. In this situation ε is called
the cutoff. By analyzing the singularity of this function as ε→ 0, and working order-by-order
in ~, we cook up a local counterterm ICT(ε) depending on the cutoff that has the same singu-
larity as W (P (ε, L), I), so that when we take I− ICT(ε), the singularity is canceled. Making
the counterterm local involves some asymptotic analysis since the functional W (P (ε, L), I)
is nonlocal.

1.4.3. Remark on cubic condition. The reason we only consider interactions that are at least
cubic modulo ~ is as follows. If we allow I to contain a term like

∫
M
µφ2, then our total

action will look like

(26) S = Squad + I = −
∫
M

φ(∆ +m2)φ+

∫
M

µφ2 + · · · ,

and we can absorb this interaction into the quadratic part,

(27) S = −
∫
M

φ(∆ + (m2 − µ))φ+ · · · .

Thus the quadratic part of the action changes, and so the propagator would have to change
as well, and so we start to move away from the connection to the original free theory.

On the other hand, a term like ~
∫
M
µφ2 is perfectly fine. In fact, it corresponds to the very

important phenomenon called mass renormalization. In this case, the squared mass changes
from m2 to m2 − ~µ, and −~µ would be called the one-loop correction to the squared mass
of the φ particle.

1.5. Classifying theories. Theorems 1 and 2 are interesting because they say that many
quantum theories exist, and in fact the space of theories is infinite-dimensional, even at each
order in ~. But now there are too many theories—which of them are of interest? So far
the only condition we have imposed is that the classical quadratic action is the given Squad.
What other conditions can we sensibly impose?

1.5.1. Correctness of the classical limit. Suppose there is some classical action S = Squad +I0

that we are interested in, and we want to say which quantum theories quantize this particular
interaction I0. To do this, we use Theorem 1: we say that a given theory T ∈ T(∞) quantizes
I0, or has classical limit I0, if the projection of T to T(0) corresponds to I0 under the canonical
bijection furnished by Theorem 1.

Let us say a little more about why the condition is phrased this way. We can pick a
renormalization scheme and consider the theory {I[L]}L∈(0,∞) that corresponds to I0 by
Theorem 2. The limit limL→0 I[L] may not exist, since it is built from I0 − ICT(ε), and
ICT(ε) has a singularity as ε → 0. However, the counterterms are only introduced because
of diagrams with positive loop number, and so ICT(ε) is divisible by ~. The right thing to
consider is

(28) lim
L→0

(I[L] mod ~) ∈ O+
loc(B).

This is the classical limit of our effective interactions I[L].
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1.5.2. Symmetry. Another natural condition is to ask that symmetries of the original clas-
sical theory are preserved by the quantization. For instance, on Minkowski space physicists
typically want theories that are invariant under Lorentzian isometries (the Poincaré group).
The simplest way to impose this condition is to assume that all of the effective interactions
I[L] are invariant under the relevant group action.

However, there is one very important symmetry that cannot be treated by requiring the
interactions to be invariant. This is the gauge symmetry of a gauge theory, and we turn to
it next.

2. Quantization of gauge theories

2.1. Motivation. In general, a gauge symmetry is a local symmetry, meaning that one
choose different transformations at different points of spacetime. For instance, we might
have “gauge fields” A = Map(M,V ) that are maps to a vector space V , and the gauge group
could be G = Map(M,G), where G is a group that acts on V , and we could assume that the
classical action S : A→ R is G-invariant, and we could seek to quantize this theory.

There is an important point here, and a variety of reasons for it, but the bottom line is
the following slogan:

(29) Gauge symmetry is not a symmetry.

This sounds absurd: we just said that S : A→ R is G-invariant! While the gauge symmetry
is a symmetry of the classical action, it is not a symmetry of the physical theory. Rather,
it is a symmetry that must be taken into account to define what the theory even is. Some
things to think about, in no particular order:

(1) In the presence of gauge symmetry, the “physical” space of field configurations is not
A but B = A/G.

(2) Because the action is G-invariant, the G-action takes a solution of the Euler-Lagrange
equations to another solution. Suppose we want to consider a boundary-value prob-
lem for this PDE on some domain. Because the symmetry is local, we can modify
a solution only in the interior of the domain. This means that none of the trandi-
tional boundary value problems (Dirichlet/Neumann in Euclidean signature, Cauchy
in Lorentzian) can be well-posed. Yet, they should be well-posed modulo G.

(3) The field A ∈ A has several modes of oscillation: some are tangent to the G-orbits:
these are unphysical and we need to get rid of them. Others are transverse to the
G-orbits and those are the ones we want to keep. There is no canonical splitting, but
we can, at least locally on A, try to construct a transversal submanifold to the G-
orbits, called a slice, and only consider fields configurations in the slice. This process
is called choosing a gauge-fixing condition.

The perturbative quantization of a gauge theory introduces a variety of difficulties. If the
space of fields is B = A/G then it has no linear structure and our previous analysis about
propagators and whatnot does not apply. So we would rather work on A directly preserving
G-invariance. But there are a couple of problems with that. Because the Euler-Lagrange
equations are degenerate, there is no Greens function or propagator. Even if we could
get around that, it is very difficult to see how G-invariance could ever be compatible with
effective theories and renormalization. The G-action is local, but the effective interaction
I[L] is nonlocal. One could think that perhaps there would be something like G[L], a group
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of a gauge transformations that are L-local, but it seems that if one composes such things
one would get transformations that are completely global.

What we will end up using is called the Batalin-Vilkovisky formalism. In modern terms,
it involves reformulating the quotient B = A/G as a derived quotient, and then taking the
derived critical locus of the classical action S. The output will be a situation where one can
say that gauge invariance is not preserved strictly but only homotopically.

2.2. Batalin-Vilkovisky formalism. The traditional explanation of the Batalin-Vilkovisky
(BV) formalism involves starting with gauge fields, introducing the ghost fields (derived quo-
tient) and then the antifields and antighosts (derived critical locus). But we need not explain
it that way, we can just assemble all of the fields into a single struture from the beginning.

2.2.1. Free theories.

Definition 1. A free BV theory on a compact manifold M consists the following.

(1) A Z-graded vector bundle E →M , whose sections are denoted E = Γ(M,E).
(2) A local pairing 〈 , 〉loc : E ⊗ E → Dens(M) with values in densities. It is required

to be skew-symmetric of cohomological degree −1 and nondegenerate fiberwise. By
integration it induces a pairing 〈 , 〉 : E⊗ E→ C.

(3) A differential operator Q : E → E of cohomological degree 1, satisfying Q2 = 0, and
which is skew-self-adjoint for 〈 , 〉. We require that (E, Q) is an elliptic complex.

Recall that a complex is called elliptic if the complex (π∗E, σ(Q)) of vector bundles on
T ∗M \M is acyclic, where π : (T ∗M \M) → M is the projection, and σ(Q) denotes the
principal symbol of Q.

Definition 2. A gauge fixing operator on a free BV theory (as in the previous definition) is
a differential operator QGF : E→ E of cohomological degree −1, satisfying (QGF)2 = 0, and
which is self-adjoint for 〈 , 〉. We require that D = [Q,QGF] is a generalized Laplacian.

Recall that an second-order operator is called a generalized Laplacian if its principal
symbol defines a Riemannian metric.

2.2.2. Odd symplectic heat kernel and the propagator. Take a free BV theory and gauge fixing
operator as above. The heat kernel Kt for D generates the heat semigroup e−tD. The only
difference between usual (metric) and odd symplectic cases is that we use the odd symplectic
form rather than a metric to define the convolution operation.

The pairing 〈 , 〉 : E⊗ E→ C yields a map 1⊗ 〈 , 〉 : E⊗ E⊗ E→ E. Given K ∈ E⊗ E

and φ ∈ E, define

(30) K ? φ = (−1)|K|(1⊗ 〈 , 〉)(K ⊗ φ)

In words, we contract the second tensor factor of K with φ using the odd symplectic pairing.
The odd symplectic heat kernel Kt ∈ E⊗ E is defined by the property that

(31) Kt ? φ = e−tDφ

The propagator of the free BV theory with gauge fixing condition is

(32) P (L,L′) =

∫ L′

L

(QGF ⊗ 1)Kt dt.
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The reason for this definition is that the quadratic action for a free BV theory is

(33) Squad(φ) =
1

2
〈φ,Qφ〉,

and indeed P (0, L) is a parametrix for Q, in the sense that

(34) Id− [P (0, L), Q] = e−LD,

and e−LD is a smoothing operator.

2.2.3. Antibracket. The odd skew pairing 〈 , 〉 : E ⊗ E → C may be regarded as an odd
symplectic form on the field space E. Therefore, the algebra of functionals O(E) carries an
odd Poisson bracket, which we denote

(35) { , } : O(E)⊗ O(E)→ O(E)

Batalin and Vilkovisky call this Poisson bracket the antibracket. Thus the field space E is to
be regarded as an odd symplectic or Poisson manifold.

2.2.4. BV operator. We are going to do some odd symplectic geometry on E. One might
expect that odd symplectic geometry is the same as even symplectic geometry, with “some
signs scattered around.” For the most part this is true, but there is one place where the
symmetry properties of the symplectic form really make a difference: namely, there is no
canonical measure on an odd symplectic manifold. One can pick a Darboux coordinate
system, and write down what would appear to be the Liouville measure, but the measure
one gets depends on the choice of coordinates.

A reformulation is this: pick a Darboux coordinate system, and let µ denote the natural
volume form in these coordinates. Take a Hamiltonian function H ∈ O(E), and let XH be its
Hamiltonian vector field. The flow of XH does not necessarily preserve µ. We can measure
the defect by taking the divergence with respect to µ, and this defines the BV operator,

(36) ∆H = divµXH .

Observe that ∆H is a second-order operator of H: one derivative to construct XH , and a
second for the divergence.

Another characterization of the BV operator is that it is the second-order differential
operator whose principal symbol is the inverse of the symplectic form (Poisson bivector). In
even symplectic geometry, this can’t exist, because the principal symbol of an operator is
always symmetric.

There is another wrinkle in the story, which is that, on an infinite-dimensional odd sym-
plectic manifold such as E, the BV operator ∆ is rather singular. The idea is that an odd
symplectic form behaves more like a metric, and the BV operator is the Laplacian for this
metric. A nice thought experiment in a simplified situation is the following. Let

(37) H = `2 =

{
(xn)∞n=1

∣∣∣∣∣
∞∑
n=1

x2
n <∞

}
denote Hilbert space. The metric on H allows us to regard H as an infinite-dimensional
Riemannian manifold. We ask, what is the Laplacian ∆ on this manifold? It is nothing but

(38) ∆ =
∞∑
n=1

∂2

∂x2
i

.
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Now there is a perfectly nice smooth function on H given by

(39) f(x) = ‖x‖2 =
∞∑
n=1

x2
i .

Now observe

(40) ∆f =
∞∑
n=1

2,

which is clearly a problem.
We will eventually see that the singularity of the naive BV operator is of a one-loop nature,

and that we can regularize it using the same tools as for Feynman integrals. This will fit
nicely with the philosophy of effective theories, since we will get a BV algebra structure at
each length scale.

2.2.5. Regularized BV operator and antibracket. Fix L ∈ (0,∞). The regularized BV oper-
ator ∆L applied to a functional I ∈ O(E)[[~]] is defined by a sum over diagrams with one
vertex and one loop, where the vertex is labeled by I and the loop is labeled by the odd
symplectic heat kernel KL. Thus, if I =

∑
i,k≥0 ~iIi,k with Ii,k ∈ Symk(E∨), then (∆LI)i,k is

given by taking Ii,k+2 and contracting two inputs using KL. See the figure at [Cos11, p. 176,
fig. 1].

Since this operation introduced a loop, we should increase the loop number by one and
add a factor of ~ in the definition of ∆L, but, following Costello, we will choose to write
this ~ factor explicitly. For this reason ∆L usually does not appear by itself in a meaningful
formula, but the combination ~∆L does.

The regularization can also be applied to the antibracket. We define {I, J}L as a sum
over diagrams with two vertices and one internal edge. The two verticies are labeled by Ir,m
and Js,n, the internal edge is labeled by KL; this diagram contributes to ({I, J}L)r+s,m+n−2

(loop numbers add). From these definitions, it is fun to check the BV identity:

(41) {I, J}L = ∆L(IJ)−∆L(I)J − (−1)|I|I∆L(J).

2.3. Quantum master equation. Formally, the quantum master equation for the action
S is

(42) ∆(exp(S/~)) = 0,

saying that the functional integral measure is invariant. This equation does not really fit
into our framework, first because we are working in terms of effective interactions I[L], and
second because the BV operator needs to be regularized. Fortunately, these requirements
line up exactly, and our version of the quantum master equation is, at scale L,

(43) ∆L

[
exp

(
1

2~
〈φ,Qφ〉+

1

~
I[L](φ)

)]
= 0.

This is equivalent to the equation

(44) QI[L] +
1

2
{I[L], I[L]}L + ~∆LI[L] = 0.

To see this, write the original equation as a sum over disconnected diagrams with any number
of vertices and a single internal edge carrying the kernel KL. By collecting the terms in the
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right way one gets the second equation times exp(S[L]/~). Equation (44) is the form we
shall usually use, and we call it the scale L quantum master equation.

Now we have a lemma that says that the quantum master equation is preserved under
renormalization group flow.

Lemma 1. A functional I[L] ∈ O+(E)[[~]] satisfies the scale L quantum master equa-
tion if and only if I[L′] satisfies the scale L′ quantum master equation, where I[L′] =
W (P (L,L′), I[L]).

2.3.1. Remarks. In terms of the general problem of quantization of gauge theories, the quan-
tum master equation is the way gauge invariance is formulated for the effective interaction.
We had to choose a gauge fixing operator QGF in order to construct the propagator and run
the whole program, but how does the theory we get depend on this choice? If the quantiza-
tion process is not to spoil gauge invariance, then the theory we get should not depend much
on the choice of gauge fixing operator. The quantum master equation implies that it does
not depend on this choice up to homotopy, though explaining this fully is rather involved.

2.3.2. Pre-theories and theories. Let (E, 〈 , 〉, Q,QGF) be a free BV theory with gauge fixing
operator. Let P (L,L′) be the associated propagator. What was previously known as a theory
will now be called a pre-theory.

Definition 3. A pre-theory quantizing the given free BV theory is a collection of effective
interactions I[L] ∈ O+,0(E)[[~]] that have cohomological degree 0 and are at least cubic
modulo ~, which satisfy the renormalization group equation

(45) I[L] = W (P (L,L′), I[L′])

and the asymptotic locality condition. We denote by by T̃(∞) set of theories, and by T̃(n) the
set of pre-theories defined modulo ~n+1.

Theorems 1 and 2 have analogs in this context, where they say pre-theories can be
parametrized, at each order in ~, by degree zero local functionals O0

loc(E), with the restriction
that at order zero the functional is at least cubic.

We reserve the term theory for a pre-theory that satisfies the quantum master equation.

Definition 4. A theory is a pre-theory that satisfies the quantum master equation. That
is, we require that

(46) QI[L] +
1

2
{I[L], I[L]}L + ~∆LI[L] = 0

for some L, and hence for every L by Lemma 1. The set of theories is denoted T(∞) and the
set of theories defined modulo ~n+1 is denoted T(n).

2.4. Obstruction theory. By theorems 1 and 2, we know that there are plenty of pre-
theories deforming a given free BV theory. It remains to understand which of these pre-
theories, if any, are theories (satisfying quantum master equation). The form of the quantum
master equation (44) is a type of Maurer-Cartan equation, and so standard ideas from
deformation-obstruction theory can be used to understand this problem.
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2.4.1. Order zero and classical master equation. Take some pre-theory {I[L]}. At order zero
in ~, the quantum master equation reads

(47) QI0[L] +
1

2
{I0[L], I0[L]}L = 0

where I0[L] is the effective interaction modulo ~; it defines an element of T̃(0). If we take
L→ 0 in this equation, we get

(48) QI0 +
1

2
{I0, I0} = 0

where I0 = limL→0 I0[L]. This I0 is precisely the classical limit of our pre-theory. It is the

local functional I0 ∈ O+
loc(E) that corresponds to {I0[L]} ∈ T̃(0) under the canonical bijection

furnished by Theorem 1. Equation (48) is called the classical master equation, and so we
have

Theorem 3. The canonical bijection T̃(0) ↔ O+
loc(E) restricts to a bijection between T(0) and

the set of solutions of the classical master equation (48).

2.4.2. From order n to order n + 1. Suppose we are given an order n theory {I[L]} ∈ T(n).
We want to know if it lifts to an order n+ 1 theory. By Theorem 1, we know that it at least

lifts to an order n + 1 pre-theory; choose such an lift and call it {Ĩ[L]} ∈ T̃(n+1). This lift
may not satisfy the quantum master equation, but we know that by Theorem 1, there is a
canonical way to alter the lift by addition of a local functional. So we want to see if there is
a local functional we can add to make the quantum master equation hold true.

Consider the expression

(49) On+1[L] = ~−(n+1)

(
QĨ[L] +

1

2
{Ĩ[L], Ĩ[L]}L + ~∆LĨ[L]

)
.

The expression in parentheses is precisely the failure of the quantum master equation to be
satisfied, and it is divisible by ~n+1 because the equation is satisfied to order n.

Theorem 4. The limit On+1 = limL→0On+1[L] exists and gives an element of Oloc(E). It
satisfies the equation

(50) QOn+1 + {I0, On+1} = 0.

The set of lifts of {I[L]} ∈ T(n) to T(n+1) are in bijection with the set of local functionals
J ∈ Oloc(E) that satisfy

(51) QJ + {I0, J} = On+1.

It is evident from this theorem that the complex controlling the deformation-obstruction
problem is nothing but (Oloc(E), Q + {I0, }). The obstruction On+1 has cohomological
degree 1, while the interactions themselves have cohomological degree 0. Thus the relevant
obstruction space is H1(Oloc(E), Q+ {I0, }). If the cohomology class of On+1 vanishes, then
the set of lifts is in bijection with degree zero local functionals satisfying

(52) QJ + {I0, J} = 0.

There is actually a further equivalence relation on such solutions, namely homotopy.
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