RIEMANN SURFACES FINAL EXAM

JAMES PASCALEFF

- For this exam, you may consult your textbook and notes.
- Unless otherwise specified, all Riemann surfaces are assumed to be compact and connected.
- Please complete four (4) of the following problems.
(1) Consider the following situation:
(a) G is a finite group,
(b) G acts effectively and holomorphically on a Riemann surface X,
(c) $p \in X$ is a point with trivial stabilizer: $G_{p}=\{e\}$,
(d) $g \in G$ is a central element (that is $g h=h g$ for all $h \in G$), and
(e) $\gamma:[0,1] \rightarrow X$ is a path with $\gamma(0)=p, \gamma(1)=g \cdot p$, and the image of γ is disjoint from the set of points in X with nontrivial stabilizer.
Denote by $\pi: X \rightarrow X / G$ the projection. Show that:
(a) $\pi \circ \gamma:[0,1] \rightarrow X / G$ is a loop whose image is disjoint from the set of branch points of π.
(b) The monodromy of the branched covering $\pi: X \rightarrow X / G$ along the loop $\pi \circ \gamma$ coincides with the permutation of $\pi^{-1}(\pi(p))$ induced by the action of the given element $g \in G$.
(2) Let X be the smooth affine plane curve defined by a polynomial $f(x, y)$:

$$
X=\left\{(x, y) \in \mathbb{C}^{2} \mid f(x, y)=0\right\}
$$

(Thus X is not compact.) Show that $p(x, y) d x+q(x, y) d y$ defines a holomorphic 1-form on X if $p(x, y)$ and $q(x, y)$ are polynomials. Show that

$$
\frac{\partial f}{\partial x} d x=-\frac{\partial f}{\partial y} d y
$$

when both sides of this equation are interpreted as 1-forms on X.
(3) The gonality γ of X is defined to be the minimal degree of a nonconstant holomorphic map $F: X \rightarrow \mathbb{P}^{1}$

$$
\gamma:=\min \left\{\operatorname{deg} F \mid F: X \rightarrow \mathbb{P}^{1} \text { nonconstant }\right\}
$$

(a) Show that γ is also equal to the minimal degree of a divisor D such that $\operatorname{dim} L(D) \geq 2$.

$$
\gamma=\min \{\operatorname{deg} D \mid D \in \operatorname{Div}(X), \operatorname{dim} L(D) \geq 2\}
$$

(b) Suppose that X has genus 3. Show that the gonality of X is either 2 or 3 .
(4) Let X be a Riemann surface of genus g. Let D be a divisor of degree $2 g+1$. Recall that D defines an embedding $\phi_{D}: X \rightarrow \mathbb{P}^{r}$, where $r=\ell(D)-1$. Show that there is a homogeneous polynomial $F\left(x_{0}, \ldots, x_{r}\right)$ that vanishes on the image $\phi_{D}(X)$. Prove an upper bound for the minimal degree of this polynomial (your bound doesn't need to be sharp.)
(5) Let X be a genus 2 Riemann surface. There is an Abel-Jacobi map

$$
A_{2}: \operatorname{Sym}^{2}(X) \rightarrow \operatorname{Jac}(X)
$$

from the symmetric product $\operatorname{Sym}^{2}(X)=(X \times X) / S_{2}$ to the Jacobian. Show that the fibers of this map are either points \mathbb{P}^{0} or projective lines \mathbb{P}^{1}, and that in fact, all fibers but one are points.

