
MATH 285 HOMEWORK 8 SOLUTIONS

Section 9.1

13.

a0 =
1

π

(∫ 0

−π
(0) dt+

∫ π

0
(1) dt

)
= 1

an =
1

π

(∫ 0

−π
(0) cosnt dt+

∫ π

0
(1) cosnt dt

)
=

1

nπ
(sinnπ − sin 0) = 0

bn =
1

π

(∫ 0

−π
(0) sinnt dt+

∫ π

0
(1) sinnt dt

)
=
− cosnπ + cos 0

nπ
=

1− (−1)n

nπ

Thus bn = 0 for even n and bn = 2
nπ for odd n. The Fourier series

for f(t) is

f(t) ∼ 1

2
+
∑
n odd

2

nπ
sinnt =

1

2
+

2

π

[
sin t

1
+

sin 3t

3
+

sin 5t

5
+ · · ·

]
15.

a0 =
1

π

∫ π

−π
t dt = 0

an =
1

π

∫ π

−π
t cosnt dt = 0

bn =
1

π

∫ π

−π
t sinnt dt =

1

π

[
1

n2
sinnt− 1

n
t cosnt

]π
−π

=
1

π

−1

n
(2π cosnπ) =

−2

n
cosnπ

Thus bn = −2/n for n even and bn = 2/n for n odd. We can also
write bn = (−1)n+1(2/n). The Fourier series is

f(t) ∼
∞∑
n=1

2

n
(−1)n+1 sinnt = 2

[
sin t

1
− sin 2t

2
+

sin 3t

3
− · · ·

]
20.

a0 =
1

π

∫ π

−π
f(t) dt =

1

π

∫ π/2

−π/2
1 dt = 1

an =
1

π

∫ π

−π
f(t) cosnt dt =

1

π

∫ π/2

−π/2
1 cosnt dt =

2

nπ
sin

nπ

2

bn =
1

π

∫ π

−π
f(t) sinnt dt =

1

π

∫ π/2

−π/2
1 sinnt dt = 0

1



2

The value of sin nπ
2 is 0 if n is even, +1 if n = 1, 5, 9, . . . , and −1 if

n = 3, 7, 11, . . . . There are various ways to write the Fourier series,
some are

f(t) ∼ 1

2
+

2

π

∞∑
n=1

1

n
sin

nπ

2
cosnt =

1

2
+

2

π

[
cos t

1
− cos 3t

3
+

cos 5t

5
− cos 7t

7
+ · · ·

]
25. Use the trigonometric identity cos2 x = (1 + cos 2x)/2 to obtain

f(t) = cos2 2t =
1

2
(1 + cos 4t) =

1

2
+

1

2
cos 4t

This already expresses f(t) as a Fourier series, so we can just match
this formula for f(t) with the general form of the Fourier series

f(t) ∼ a0
2

+

∞∑
n=1

an cosnt+ bn sinnt

To find that a0 = 1, a4 = 1/2, and all other Fourier coefficients are
zero.

27. The equation to prove is∫ π

π
cosmt cosnt dt =

{
0 if m 6= n

π if m = n

Apply the identity cosA cosB = 1
2 [cos(A+B) + cos(A−B)] to the

integrand.

1

2

∫ π

−π
[cos((m+n)t)+cos((m−n)t)] dt =

1

2

[
sin((m+ n)t)

m+ n
+

sin((m− n)t)

m− n

]π
−π

This is valid as long as the denominators m+ n and m− n are not
zero. Since m and n are positive integers, m + n is never zero, but
m− n can be zero if m = n.

In the case where m 6= n, we then evaluate at the limits of inte-
gration to obtain

1

2

[
sin((m+ n)π)

m+ n
+

sin((m− n)π)

m− n

]
−1

2

[
sin((m+ n)(−π))

m+ n
+

sin((m− n)(−π))

m− n

]
All the terms in this expression are zero because sin kπ = 0 for any
integer k.

In the case where m = n, the integral actually becomes

1

2

∫ π

−π
[cos((m+ n)t) + 1] dt =

1

2

[
sin((m+ n)t)

m+ n
+ t

]π
−π

=
1

2

[
sin((m+ n)π)

m+ n
+ π

]
− 1

2

[
sin((m+ n)(−π))

m+ n
− π

]
= π
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28. The equation to prove is∫ π

π
sinmt sinnt dt =

{
0 if m 6= n

π if m = n

The relevant trigonometric identity is sinA sinB = 1
2 [− cos(A+B)+

cos(A−B)]. Applying this, we get, if we assume m 6= n,

1

2

∫ π

−π
[− cos((m+n)t)+cos((m−n)t)] dt =

1

2

[
−sin((m+ n)t)

m+ n
+

sin((m− n)t)

m− n

]π
−π

When we evaluate at the limits, all terms involve sin kπ, for various
integers k, so they are all zero.

If m = n, the integral actually becomes

1

2

∫ π

−π
[− cos((m+ n)t) + 1] dt =

1

2

[
−sin((m+ n)t)

m+ n
+ t

]π
−π

= π

29. The equation to prove is∫ π

π
cosmt sinnt dt =

{
0 if m 6= n

π if m = n

The relevant trigonometric identity is cosA sinB = 1
2 [sin(A+ B)−

sin(A−B)]. Applying this, if we assume m 6= n, we obtain

1

2

∫ π

−π
[sin((m+n)t)−sin((m−n)t)] dt =

1

2

[
− cos((m+ n)t)

m+ n
− − cos((m− n)t)

m− n

]π
−π

Since cos is an even function, when we evaluate at the limits −π and
π, all terms will cancel, so this is zero. (We could have also seen this
by observing that the integrand is an odd function.)

In the case where m = n, the result is still zero, but the integrand
actually becomes

1

2

∫ π

−π
[sin((m+ n)t)− 0] dt = 0

30. Let f(t) be a piecewise continuous function with period P .

(a) Let 0 ≤ a < P . We want to show that
∫ a+P
P f(t) dt =

∫ a
0 f(t) dt.

If we apply the substitution u = t − P , du = dt to the first
integral, we obtain∫ t=a+P

t=P
f(t) dt =

∫ u=a

u=0
f(u+ P ) du

Since f is periodic with period P , we have f(u + P ) = f(u).
Thus ∫ u=a

u=0
f(u+ P ) du =

∫ u=a

u=0
f(u) du

Changing the dummy variable u back to t gives us what we
want.
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Next, we want to conclude that
∫ a+P
a f(t) dt =

∫ P
0 f(t) dt. Di-

vide the interval [a, a+ P ] into [a, P ] and [P, a+ P ]. Then∫ a+P

a
f(t) dt =

∫ P

a
f(t) dt+

∫ a+P

P
f(t) dt =

∫ P

a
f(t) dt+

∫ a

0
f(t) dt

where we have used what was just proved. But then we see that
the integrals over the intervals [a, P ] and [0, a] can be combined
into an integral over the interval [0, P ].∫ P

a
f(t) dt+

∫ a

0
f(t) dt =

∫ P

0
f(t) dt

This completes the proof.
(b) Let A be any number. We want to show that∫ A+P

A
f(t) dt =

∫ P

0
f(t) dt

First, find an integer n and a number a with 0 ≤ a < P such
that A = nP + a. (It is easy to see that such n and a exist.
One can take n to be the integer part of A/P , and then define
a accordingly.) Now we apply the substitution v = t − nP to

the integral
∫ A+P
A f(t) dt:∫ t=A+P

t=A
f(t) dt =

∫ v=a+P

v=a
f(v+nP ) dv =

∫ v=a+P

v=a
f(v) dv =

∫ v=P

v=0
f(v) dv

The first equality is the substitution rule, the second equality
uses the fact that f is periodic so f(v + nP ) = f(v), and the
third equality uses the result of the first part of this problem.
Then changing the dummy variable v back to t gives the desired
result.


