MATH 285 HOMEWORK 7 SOLUTIONS

Section 3.5

In all of the problems from section 3.5, there is (mathematical) resonance, and the ordinary undetermined coefficients technique will fail. Therefore we use the annihilator method.

- 10. This equation may be written $(D^2 + 9)y = f(x)$, where $f(x) = 2\cos 3x + 3\sin 3x$. An annihilator for f(x) is $A = D^2 + 9$. Applying this A to both sides of the equation we get $(D^2 + 9)^2 y = 0$. This is a homogeneous equation with characteristic equation $(r^2 + 9)^2 = 0$. The roots are $r = \pm 3i$, each with multiplicity two. Our trial solution is the general solution of this latter equation: $y_{\text{trial}}(x) = A\cos 3x + B\sin 3x + Cx\cos 3x + Dx\sin 3x$. Plugging this back into the original equation, we get $(D^2 + 9)y_{\text{trial}} = C(-6\sin 3x) + D(6\cos 3x)$. Thus we must have -6C = 3, 6D = 2, so C = -1/2, D = 1/3 (A and B can be anything). Thus a particular solution is $y_p(x) = -(1/2)x\cos 3x + (1/3)x\sin 3x$
- 14. This equation may be written $(D^4 2D^2 + 1)y = xe^x$. The differential operator factors as $(D^2 1)^2 = (D 1)^2(D + 1)^2$. An annihilator of xe^x is $A = (D 1)^2$. Applying this to both sides of the equation we obtain $(D 1)^4(D + 1)^2y = 0$. Our trial solution is the general solution of this equation $y_{\text{trial}} = Ae^x + Bxe^x + Cx^2e^x + Ex^3e^x + Fe^{-x} + Gxe^{-x}$. Pluggin this back into the original equation, we see that when we compute $(D 1)^2(D + 1)^2y_{\text{trial}}$, the terms with A, B, F, G all go away, since those terms solve the homogeneous equation $(D 1)^2(D+1)^2y = 0$. So we only need to look at terms with C and E. We compute $(D 1)^2(D + 1)^2[x^2e^x] = 8e^x$ and $(D 1)^2(D + 1)^2[x^3e^x] = 24xe^x + 24e^x$. So we need $8Ce^x + 24E(xe^x + e^x) = xe^x$. So 24E = 1, and 8C + 24E = 0. So E = 1/24 and C = -1/8. Thus a particular solution is $y_p(x) = -(1/8)x^2e^x + (1/24)x^3e^x$.
- 17. This equation may be written $(D^2 + 1)y = \sin x + x \cos x$. An annihilator for $\sin x + x \cos x$ is $(D^2 + 1)^2$. Applying this to both sides of the equation yields $(D^2 + 1)^3 y = 0$. Our trial solution is therefore $y_{\text{trial}}(x) = A \cos x + B \sin x + Cx \cos x + Ex \sin x + Fx^2 \cos x + Gx^2 \sin x$. When we compute $(D^2 + 1)y_{\text{trial}}$, we see that the terms with A and B go away, so we only need to focus on the other four terms. We have $(D^2 + 1)[x \cos x] = -2 \sin x$, $(D^2 + 1)[x \sin x] = 2 \cos x$, $(D^2 + 1)[x^2 \cos x] = -4x \sin x + 2 \cos x$, $(D^2 + 1)[x^2 \sin x] = 4x \cos x + 2 \sin x$. Thus we need $C(-2 \sin x) + E(2 \cos x) + F(-4x \sin x + 2 \cos x) + G(4x \cos x + 2 \sin x) = \sin x + E(2 \cos x) + F(-4x \sin x + 2 \cos x) + G(4x \cos x + 2 \sin x) = \sin x + E(2 \cos x) + F(-4x \sin x + 2 \cos x) + G(4x \cos x + 2 \sin x) = \sin x + E(2 \cos x) + F(-4x \sin x + 2 \cos x) + G(4x \cos x + 2 \sin x) = \sin x + E(2 \cos x) + F(-4x \sin x + 2 \cos x) + G(4x \cos x + 2 \sin x) = \sin x + E(2 \cos x) + F(-4x \sin x + 2 \cos x) + G(4x \cos x + 2 \sin x) = \sin x + E(2 \cos x) + F(-4x \sin x + 2 \cos x) + G(4x \cos x + 2 \sin x) = \sin x + E(2 \cos x) + F(-4x \sin x + 2 \cos x) + G(4x \cos x + 2 \sin x) = \sin x + E(2 \cos x) + F(-4x \sin x + 2 \cos x) + G(4x \cos x + 2 \sin x) = \sin x + E(2 \cos x) + F(-4x \sin x + 2 \cos x) + G(4x \cos x + 2 \sin x) = \sin x + E(2 \cos x) + F(-4x \sin x + 2 \cos x) + G(4x \cos x + 2 \sin x) = \sin x + E(2 \cos x) + F(-4x \sin x + 2 \cos x) + G(4x \cos x + 2 \sin x) = \sin x + E(2 \cos x) + F(-4x \sin x + 2 \cos x) + G(4x \cos x + 2 \sin x) = \sin x + E(2 \cos x) + F(-4x \sin x) = \sin x + E(2 \cos x) + F(-4x \sin x) = \sin x + E(2 \cos x) + F(-4x \sin x) = \sin x + E(2 \cos x) + F(-4x \sin x) = \sin x + E(2 \cos x) + F(-4x \sin x) = \sin x + E(2 \cos x) + F(-4x \sin x) = E(2 \cos x) + E(2$

 $x \cos x$. Thus -2C + 2G = 1, 4G = 1, 2E + 2F = 0, -4F = 0. So F = 0, E = 0, G = 1/4, C = -1/4. A particular solution is $y_p(x) = -(1/4)x \cos x + (1/4)x^2 \sin x$.

34. First we find the general solution of $(D^2 + 1)y = \cos x$. The annihilator is $(D^2 + 1)$, so we look at $(D^2 + 1)^2 y = 0$. The trial solution is $y_{\text{trial}} = A \cos x + B \sin x + Cx \cos x + Ex \sin x$. Plugging this into the original equation, we get $(D^2 + 1)y_{\text{trial}} = C(-2\sin x) + E(2\cos x)$. Thus we must have -2C = 0, and 2E = 1, while A and B may be anything. So the general solution of the nonhomogenous equation is $y_g(x) = A \cos x + B \sin x + (1/2)x \sin x$. The derivative is $y'_g(x) = -A \sin x + B \cos x + (1/2)(\sin x + x \cos x)$. The initial conditions y(0) = 1, y'(0) = -1 yield A = 1 and B = -1. Thus the solution is $y(x) = \cos x - \sin x + (1/2)x \sin x$.

Section 3.6

- 2. Trial solution $x_{\text{trial}}(t) = A \sin 3t$ yields $x''_{\text{trial}} + 4x_{\text{trial}} = (-5A) \sin 3t$. For this to equal $5 \sin 3t$ we take A = -1. So the particular solution is $x_p(t) = -\sin 3t$. The complementary solution is $x_c(t) = c_1 \cos 2t + c_2 \sin 2t$, and the general solution is $x(t) = c_1 \cos 2t + c_2 \sin 2t - \sin 3t$, with derivative $x'(t) = -2c_1 \sin 2t + 2c_2 \cos 2t - 3\cos 3t$. Imposing the initial conditions x(0) = 0, x'(0) = 0, we get $c_1 = 0$ and $2c_2 - 3 = 0$. Thus $c_2 = 3/2$. The solution is $x(t) = (3/2) \sin 2t - \sin 3t$.
- 5. Trial solution $x_{\text{trial}}(t) = A \cos \omega t$ gives $(-m\omega^2 + k)A \cos \omega t = F_0 \cos \omega t$. Thus $A = F_0/(k - m\omega^2)$. With $\omega_0 = \sqrt{k/m}$, the general solution is $x(t) = c_1 \cos \omega_0 t + c_2 \sin \omega_0 t + (F_0/(k - m\omega^2)) \cos \omega t$. Imposing the initial condition $x(0) = x_0$ and x'(0) = 0 yields $c_1 + (F_0/(k - m\omega^2)) = x_0$, and $\omega_0 c_2 = 0$. Thus $c_2 = 0$ and $c_1 = x_0 - (F_0/(k - m\omega^2))$. The solution is $x(t) = (x_0 - (F_0/(k - m\omega^2))) \cos \omega_0 t + (F_0/(k - m\omega^2)) \cos \omega t$.
- 6. Writing the differential equation in the form $x'' + \omega_0^2 x = (F_0/m) \cos \omega_0 t$ with $\omega_0 = \sqrt{k/m}$, we see that it is the same as equation (13) in the text. Therefore a particular solution is $x_p(t) = \frac{F_0}{2m\omega_0} t \sin \omega_0 t$. The general solution is $x(t) = c_1 \cos \omega_0 t + c_2 \sin \omega_0 t + \frac{F_0}{2m\omega_0} t \sin \omega_0 t$. Imposing the initial conditions x(0) = 0 and $x'(0) = v_0$, we obtain $c_1 = 0$ and $\omega_0 c_2 = v_0$. Thus $c_2 = v_0/\omega_0$, and the solution is $x(t) = \left(\frac{v_0}{\omega_0} + \frac{F_0}{2m\omega_0}t\right) \sin \omega_0 t$.
- 7. $x_{\text{trial}} = A \cos 3t + B \sin 3t$ yields $(-9A + 12B + 4A) \cos 3t + (-9B 12A + 4B) \sin 3t = 10 \cos 3t$. Thus -5A + 12B = 10 and -5B 12A = 0. Thus A = -50/169 and B = 120/169. The steady periodic solution is $x_{sp}(t) = (-50/169) \cos 3t + (120/169) \sin 3t$. This equals $C \cos(3t \alpha)$, where the amplitude is $C = \sqrt{A^2 + B^2} = \sqrt{50^2 + 120^2}/169 = 10/13$, and the phase shift is $\alpha = \pi \tan^{-1}(12/5)$.
- 8. $x_{\text{trial}} = A\cos 5t + B\sin 5t$ yields $(-25A + 15B + 5A)\cos 5t + (-25B 15A + 5B)\sin 5t = -4\cos 5t$. Thus -20A + 15B = -4, and -20B 15B + 5B.

15A = 0. We get A = 16/125 and B = -12/125. Thus the steady periodic solution is $x_{sp}(t) = (16/125) \cos 5t - (12/125) \sin 5t$. This equals $C \cos(5t - \alpha)$, where the amplitude is $C = \sqrt{A^2 + B^2} = 4/25$, and $\alpha = 2\pi - \tan^{-1}(3/4)$.

15. $x_{\text{trial}} = A \cos \omega t + B \sin \omega t$ yields $(-\omega^2 A + 2\omega B + 2A) \cos \omega t + (-\omega^2 B - 2\omega A + 2B) \sin \omega t = 2 \cos \omega t$. Thus $(2 - \omega^2)A + 2\omega B = 2$ and $-2\omega A + (2 - \omega^2)B = 0$. We find $A = \frac{2(2 - \omega^2)}{4 + \omega^4}$ and $B = \frac{4\omega}{4 + \omega^4}$. The amplitude is $C(\omega) = \sqrt{A^2 + B^2} = \frac{2}{\sqrt{4 + \omega^4}}$. The critical points of this function are the critical points of $4 + \omega^4$, namely solutions of $4\omega^3 = 0$, meaning the only critical point is $\omega = 0$, where C(0) = 1. Thus $C(\omega)$ is a decreasing function for all ω , and there is no practical resonance.