MATH 285 HOMEWORK 7 SOLUTIONS

SECTION 3.5

In all of the problems from section 3.5, there is (mathematical) resonance, and the ordinary undetermined coefficients technique will fail. Therefore we use the annihilator method.
10. This equation may be written $\left(D^{2}+9\right) y=f(x)$, where $f(x)=$ $2 \cos 3 x+3 \sin 3 x$. An annihilator for $f(x)$ is $A=D^{2}+9$. Applying this A to both sides of the equation we get $\left(D^{2}+9\right)^{2} y=0$. This is a homogeneous equation with characteristic equation $\left(r^{2}+9\right)^{2}=0$. The roots are $r= \pm 3 i$, each with multiplicity two. Our trial solution is the general solution of this latter equation: $y_{\text {trial }}(x)=A \cos 3 x+$ $B \sin 3 x+C x \cos 3 x+D x \sin 3 x$. Plugging this back into the original equation, we get $\left(D^{2}+9\right) y_{\text {trial }}=C(-6 \sin 3 x)+D(6 \cos 3 x)$. Thus we must have $-6 C=3,6 D=2$, so $C=-1 / 2, D=1 / 3(A$ and B can be anything). Thus a particular solution is $y_{p}(x)=$ $-(1 / 2) x \cos 3 x+(1 / 3) x \sin 3 x$
14. This equation may be written $\left(D^{4}-2 D^{2}+1\right) y=x e^{x}$. The differential operator factors as $\left(D^{2}-1\right)^{2}=(D-1)^{2}(D+1)^{2}$. An annihilator of $x e^{x}$ is $A=(D-1)^{2}$. Applying this to both sides of the equation we obtain $(D-1)^{4}(D+1)^{2} y=0$. Our trial solution is the general solution of this equation $y_{\text {trial }}=A e^{x}+B x e^{x}+C x^{2} e^{x}+E x^{3} e^{x}+F e^{-x}+$ $G x e^{-x}$. Pluggin this back into the original equation, we see that when we compute $(D-1)^{2}(D+1)^{2} y_{\text {trial }}$, the terms with A, B, F, G all go away, since those terms solve the homogeneous equation $(D-$ $1)^{2}(D+1)^{2} y=0$. So we only need to look at terms with C and E. We compute $(D-1)^{2}(D+1)^{2}\left[x^{2} e^{x}\right]=8 e^{x}$ and $(D-1)^{2}(D+1)^{2}\left[x^{3} e^{x}\right]=$ $24 x e^{x}+24 e^{x}$. So we need $8 C e^{x}+24 E\left(x e^{x}+e^{x}\right)=x e^{x}$. So $24 E=1$, and $8 C+24 E=0$. So $E=1 / 24$ and $C=-1 / 8$. Thus a particular solution is $y_{p}(x)=-(1 / 8) x^{2} e^{x}+(1 / 24) x^{3} e^{x}$.
17. This equation may be written $\left(D^{2}+1\right) y=\sin x+x \cos x$. An annihilator for $\sin x+x \cos x$ is $\left(D^{2}+1\right)^{2}$. Applying this to both sides of the equation yields $\left(D^{2}+1\right)^{3} y=0$. Our trial solution is therefore $y_{\text {trial }}(x)=A \cos x+B \sin x+C x \cos x+E x \sin x+$ $F x^{2} \cos x+G x^{2} \sin x$. When we compute $\left(D^{2}+1\right) y_{\text {trial }}$, we see that the terms with A and B go away, so we only need to focus on the other four terms. We have $\left(D^{2}+1\right)[x \cos x]=-2 \sin x$, $\left(D^{2}+1\right)[x \sin x]=2 \cos x,\left(D^{2}+1\right)\left[x^{2} \cos x\right]=-4 x \sin x+2 \cos x$, $\left(D^{2}+1\right)\left[x^{2} \sin x\right]=4 x \cos x+2 \sin x$. Thus we need $C(-2 \sin x)+$ $E(2 \cos x)+F(-4 x \sin x+2 \cos x)+G(4 x \cos x+2 \sin x)=\sin x+$
$x \cos x$. Thus $-2 C+2 G=1,4 G=1,2 E+2 F=0,-4 F=0$. So $F=0, E=0, G=1 / 4, C=-1 / 4$. A particular solution is $y_{p}(x)=-(1 / 4) x \cos x+(1 / 4) x^{2} \sin x$.
34. First we find the general solution of $\left(D^{2}+1\right) y=\cos x$. The annihilator is $\left(D^{2}+1\right)$, so we look at $\left(D^{2}+1\right)^{2} y=0$. The trial solution is $y_{\text {trial }}=A \cos x+B \sin x+C x \cos x+E x \sin x$. Plugging this into the original equation, we get $\left(D^{2}+1\right) y_{\text {trial }}=C(-2 \sin x)+E(2 \cos x)$. Thus we must have $-2 C=0$, and $2 E=1$, while A and B may be anything. So the general solution of the nonhomogenous equation is $y_{g}(x)=A \cos x+B \sin x+(1 / 2) x \sin x$. The derivative is $y_{g}^{\prime}(x)=-A \sin x+B \cos x+(1 / 2)(\sin x+x \cos x)$. The initial conditions $y(0)=1, y^{\prime}(0)=-1$ yield $A=1$ and $B=-1$. Thus the solution is $y(x)=\cos x-\sin x+(1 / 2) x \sin x$.

Section 3.6

2. Trial solution $x_{\text {trial }}(t)=A \sin 3 t$ yields $x_{\text {trial }}^{\prime \prime}+4 x_{\text {trial }}=(-5 A) \sin 3 t$. For this to equal $5 \sin 3 t$ we take $A=-1$. So the particular solution is $x_{p}(t)=-\sin 3 t$. The complementary solution is $x_{c}(t)=c_{1} \cos 2 t+$ $c_{2} \sin 2 t$, and the general solution is $x(t)=c_{1} \cos 2 t+c_{2} \sin 2 t-\sin 3 t$, with derivative $x^{\prime}(t)=-2 c_{1} \sin 2 t+2 c_{2} \cos 2 t-3 \cos 3 t$. Imposing the initial conditions $x(0)=0, x^{\prime}(0)=0$, we get $c_{1}=0$ and $2 c_{2}-3=0$. Thus $c_{2}=3 / 2$. The solution is $x(t)=(3 / 2) \sin 2 t-\sin 3 t$.
3. Trial solution $x_{\text {trial }}(t)=A \cos \omega t$ gives $\left(-m \omega^{2}+k\right) A \cos \omega t=F_{0} \cos \omega t$. Thus $A=F_{0} /\left(k-m \omega^{2}\right)$. With $\omega_{0}=\sqrt{k / m}$, the general solution is $x(t)=c_{1} \cos \omega_{0} t+c_{2} \sin \omega_{0} t+\left(F_{0} /\left(k-m \omega^{2}\right)\right) \cos \omega t$. Imposing the initial condition $x(0)=x_{0}$ and $x^{\prime}(0)=0$ yields $c_{1}+\left(F_{0} /\left(k-m \omega^{2}\right)=x_{0}\right.$, and $\omega_{0} c_{2}=0$. Thus $c_{2}=0$ and $c_{1}=x_{0}-\left(F_{0} /\left(k-m \omega^{2}\right)\right)$. The solution is $x(t)=\left(x_{0}-\left(F_{0} /\left(k-m \omega^{2}\right)\right)\right) \cos \omega_{0} t+\left(F_{0} /\left(k-m \omega^{2}\right)\right) \cos \omega t$.
4. Writing the differential equation in the form $x^{\prime \prime}+\omega_{0}^{2} x=\left(F_{0} / m\right) \cos \omega_{0} t$ with $\omega_{0}=\sqrt{k / m}$, we see that it is the same as equation (13) in the text. Therefore a particular solution is $x_{p}(t)=\frac{F_{0}}{2 m \omega_{0}} t \sin \omega_{0} t$. The general solution is $x(t)=c_{1} \cos \omega_{0} t+c_{2} \sin \omega_{0} t+\frac{F_{0}}{2 m \omega_{0}} t \sin \omega_{0} t$. Imposing the initial conditions $x(0)=0$ and $x^{\prime}(0)=v_{0}$, we obtain $c_{1}=0$ and $\omega_{0} c_{2}=v_{0}$. Thus $c_{2}=v_{0} / \omega_{0}$, and the solution is $x(t)=\left(\frac{v_{0}}{\omega_{0}}+\frac{F_{0}}{2 m \omega_{0}} t\right) \sin \omega_{0} t$.
5. $x_{\text {trial }}=A \cos 3 t+B \sin 3 t$ yields $(-9 A+12 B+4 A) \cos 3 t+(-9 B-$ $12 A+4 B) \sin 3 t=10 \cos 3 t$. Thus $-5 A+12 B=10$ and $-5 B-$ $12 A=0$. Thus $A=-50 / 169$ and $B=120 / 169$. The steady periodic solution is $x_{s p}(t)=(-50 / 169) \cos 3 t+(120 / 169) \sin 3 t$. This equals $C \cos (3 t-\alpha)$, where the amplitude is $C=\sqrt{A^{2}+B^{2}}=$ $\sqrt{50^{2}+120^{2}} / 169=10 / 13$, and the phase shift is $\alpha=\pi-\tan ^{-1}(12 / 5)$.
6. $x_{\text {trial }}=A \cos 5 t+B \sin 5 t$ yields $(-25 A+15 B+5 A) \cos 5 t+(-25 B-$ $15 A+5 B) \sin 5 t=-4 \cos 5 t$. Thus $-20 A+15 B=-4$, and $-20 B-$
$15 A=0$. We get $A=16 / 125$ and $B=-12 / 125$. Thus the steady periodic solution is $x_{s p}(t)=(16 / 125) \cos 5 t-(12 / 125) \sin 5 t$. This equals $C \cos (5 t-\alpha)$, where the amplitude is $C=\sqrt{A^{2}+B^{2}}=4 / 25$, and $\alpha=2 \pi-\tan ^{-1}(3 / 4)$.
7. $x_{\text {trial }}=A \cos \omega t+B \sin \omega t$ yields $\left(-\omega^{2} A+2 \omega B+2 A\right) \cos \omega t+\left(-\omega^{2} B-\right.$ $2 \omega A+2 B) \sin \omega t=2 \cos \omega t$. Thus $\left(2-\omega^{2}\right) A+2 \omega B=2$ and $-2 \omega A+$ $\left(2-\omega^{2}\right) B=0$. We find $A=\frac{2\left(2-\omega^{2}\right)}{4+\omega^{4}}$ and $B=\frac{4 \omega}{4+\omega^{4}}$. The amplitude is $C(\omega)=\sqrt{A^{2}+B^{2}}=\frac{2}{\sqrt{4+\omega^{4}}}$. The critical points of this function are the critical points of $4+\omega^{4}$, namely solutions of $4 \omega^{3}=0$, meaning the only crtical point is $\omega=0$, where $C(0)=1$. Thus $C(\omega)$ is a decreasing function for all ω, and there is no practical resonance.
