MATH 285 HOMEWORK 6 SOLUTIONS

SEction 3.3

8. The characteristic equation is $r^{2}-6 r+13=0$. The roots are $r=\frac{6 \pm \sqrt{-16}}{2}=3 \pm 2 i$, which are complex. The general solution is $y(x)=c_{1} e^{3 x} \cos 2 x+c_{2} e^{3 x} \sin 2 x$.
9. The characteristic equation is $r^{4}+3 r^{2}-4=0$. This polynomial factors as $\left(r^{2}-1\right)\left(r^{2}+4\right)=0$, so the roots are $r=1,-1,2 i,-2 i$. The real root $r=1$ gives a solution $y_{1}(x)=e^{x}$. The real root $r=-1$ gives a solution $y_{2}(x)=e^{-x}$, and the pair of complex solutions $r= \pm 2 i$ gives a pair of solutions $y_{3}(x)=\cos 2 x$ and $y_{4}(x)=\sin 2 x$. The general solution is the linear combination of these four functions: $y(x)=c_{1} e^{x}+c_{2} e^{-x}+c_{3} \cos 2 x+c_{4} \sin 2 x$.
10. The characteristic equation is $9 r^{2}+6 r+4=0$. The roots are $r=\frac{-6 \pm \sqrt{-108}}{18}=\frac{-6 \pm 6 \sqrt{3} i}{18}=-(1 / 3) \pm i(1 / \sqrt{3})$. The general solution is

$$
y(x)=c_{1} e^{-x / 3} \cos (x / \sqrt{3})+c_{2} e^{-x / 3} \sin (x / \sqrt{3})
$$

The derivative of this is

$$
\begin{aligned}
& y(x)=c_{1}\left[(-1 / 3) e^{-x / 3} \cos (x / \sqrt{3})-e^{-x / 3}(1 / \sqrt{3}) \sin (x / \sqrt{3})\right] \\
& \quad+c_{2}\left[(-1 / 3) e^{-x / 3} \sin (x / \sqrt{3})+e^{-x / 3}(1 / \sqrt{3}) \cos (x / \sqrt{3})\right]
\end{aligned}
$$

The initial condition $y(0)=3$ yields $c_{1}=3$, and the condition $y^{\prime}(0)=4$ yields $-c_{1} / 3+c_{2} / \sqrt{3}=4$. Thus $c_{2}=5 \sqrt{3}$. The desired particular solution is

$$
y(x)=3 e^{-x / 3} \cos (x / \sqrt{3})+5 \sqrt{3} e^{-x / 3} \sin (x / \sqrt{3})
$$

SECTION 3.4

13. (a) The characteristic equation is $10 r^{2}+9 r+2=(5 r+2)(2 r+1)=0$, and the roots are $r=-2 / 5,-1 / 2$. This are real and distinct, so the general solution is $x(t)=c_{1} e^{-2 t / 5}+c_{2} e^{-t / 2}$. The initial conditions $x(0)=0, x^{\prime}(0)=5$ yield the equations $c_{1}+c_{2}=0$, $(-2 / 5) c_{2}+(-1 / 2) c_{2}=5$. The solutions are $c_{1}=50, c_{2}=-50$. Thus the particular solution is $x(t)=50\left(e^{-2 t / 5}-e^{-t / 2}\right)$.
(b) We are trying to find the maximum value of $x(t)$. The derivative is $x^{\prime}(t)=-20 e^{-2 t / 5}+25 e^{-t / 2}$. Setting this equal to zero, we get $5 e^{-t / 10}=4$. Thus $x^{\prime}(t)=0$ when $t=10 \ln (5 / 4)$. Hence the mass's farthest distance to the right is $x(10 \ln (5 / 4))=512 / 125$.
14. In the critically damped case, we have $c^{2}=4 k m$. With $p=c /(2 m)$, we may write the general solution as $x(t)=e^{-p t}\left(c_{1}+c_{2} t\right)$. The derivative is $x^{\prime}(t)=(-p) e^{-p t}\left(c_{1}+c_{2} t\right)+e^{-p t}\left(c_{2}\right)$. Imposing the initial conditions $x(0)=x_{0}$ and $x^{\prime}(0)=v_{0}$ yields the conditions $x_{0}=c_{1}$, and $v_{0}=-p c_{1}+c_{2}$. Thus $c_{1}=x_{0}$, and $c_{2}=v_{0}+p x_{0}$. So the solution is $x(t)=e^{-p t}\left(x_{0}+\left(v_{0}+p x_{0}\right) t\right)=\left(x_{0}+v_{0} t+p x_{0} t\right) e^{-p t}$.
15. In the overdamped case, $c^{2}>4 k m$, and if we write $r_{1}, r_{2}=-p \pm$ $\sqrt{p^{2}-\omega_{0}^{2}}$, and $\gamma=\left(r_{1}-r_{2}\right) / 2$, then the general solution is $x(t)=$ $c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}$. The velocity is $x^{\prime}(t)=c_{1} r_{1} e^{r_{1} t}+c_{2} r_{2} e^{r_{2} t}$. Imposing the initial conditions $x(0)=x_{0}$ and $x^{\prime}(0)=v_{0}$ yields the equations $c_{1}+c_{2}=x_{0}$, and $c_{1} r_{1}+c_{2} r_{2}=v_{0}$. Multiply the first by r_{1} and subtract it from the second to obtain $c_{2} r_{2}-c_{2} r_{1}=v_{0}-r_{1} x_{0}$. Thus $c_{2}=\left(v_{0}-r_{1} x_{0}\right) /\left(r_{2}-r_{1}\right)=\left(v_{0}-r_{1} x_{0}\right) /(-2 \gamma)$. Plugging this back into the first equation we get $c_{1}=\left(v_{0}-r_{2} x_{0}\right) /(2 \gamma)$. Thus the solution is $x(t)=(1 / 2 \gamma)\left[\left(v_{0}-r_{2} x_{0}\right) e^{r_{1} t}-\left(v_{0}-r_{1} x_{0}\right) e^{r_{2} t}\right]$.
16. In the underdamped case, we have $c^{2}<4 k m$. With $p=c /(2 m)$, and $\omega_{1}=\sqrt{(k / m)^{2}-p^{2}}$, the general solution is $x(t)=e^{-p t}\left(c_{1} \cos \omega_{1} t+\right.$ $\left.c_{2} \sin \omega_{1} t\right)$. The derivative is $x^{\prime}(t)=\omega_{1} e^{-p t}\left(-c_{1} \sin \omega_{1} t+c_{2} \cos \omega_{1} t\right)-$ $p e^{-p t}\left(c_{1} \cos \omega_{1} t+c_{2} \sin \omega_{1} t\right)$. Imposing the initial conditions $x(0)=$ x_{0} and $x^{\prime}(0)=v_{0}$, we get the equations $x_{0}=c_{1}$, and $v_{0}=\omega_{1} c_{2}-p c_{1}$. Thus $c_{1}=x_{0}$, and $c_{2}=\left(v_{0}-p x_{0}\right) / \omega_{1}$. Thus the solution is $x(t)=$ $e^{-p t}\left(x_{0} \cos \omega_{1} t+\left(\left(v_{0}+p x_{0}\right) / \omega_{1}\right) \sin \omega_{1} t\right)$.

SECTION 3.5

4. Try $y=A e^{x}+B x e^{x}$. We have $\left(4 D^{2}+4 D+1\right)\left[e^{x}\right]=9 e^{x}$, and $\left(4 D^{2}+4 D+1\right)\left[x e^{x}\right]=9 x e^{x}+12 e^{x}$. Thus $\left(4 D^{2}+4 D+1\right)\left[A e^{x}+\right.$ $\left.B x e^{x}\right]=A\left(9 e^{x}\right)+B\left(9 x e^{x}+12 e^{x}\right)=9 B x e^{x}+(9 A+12 B) e^{x}$. In order for this to equal $3 x e^{x}$, we must have $9 B=3$ and $9 A+12 B=0$. Thus $B=1 / 3$, and $A=-4 / 9$. The particular solution is $y_{p}(x)=$ $(-4 / 9) e^{x}+(1 / 3) x e^{x}$.
5. Try $y=A+B x+C x^{2}$. We have $\left(2 D^{2}+4 D+7\right)[1]=7,\left(2 D^{2}+\right.$ $4 D+7)[x]=4+7 x,\left(2 D^{2}+4 D+7\right)\left[x^{2}\right]=4+8 x+7 x^{2}$. Thus $\left(2 D^{2}+4 D+7\right)\left[A+B x+C x^{2}\right]=A(7)+B(4+7 x)+C\left(4+8 x+7 x^{2}\right)=$ $7 C x^{2}+(8 C+7 B) x+(4 C+4 B+7 A)$. In order for this to equal x^{2}, we must have $7 C=1,7 B+8 C=0$, and $7 A+4 B+4 C=0$. Thus $C=1 / 7, B=-8 / 49$, and $A=4 / 343$. The particular solution is $y_{p}(x)=(4 / 343)-(8 / 49) x+(1 / 7) x^{2}$.
6. The complementary solution (general solution of homogeneous equation) is $y_{c}(x)=c_{1} \cos 2 x+c_{2} \sin 2 x$, because the roots of the characteristic equation $r^{2}+4=0$ are $r= \pm 2 i$. To find a particular solution of the nonhomogeneous equation, we try $y=A+B x$. We have $\left(D^{2}+\right.$ 4) $[A+B x]=4 A+4 B x$. In order for this to equal $2 x$, we take $A=0$ and $B=1 / 2$, so $y_{p}(x)=x / 2$. The general solution of the nonhomogeneous equation is $y(x)=y_{c}(x)+y_{p}(x)=c_{1} \cos 2 x+c_{2} \sin 2 x+x / 2$,
and its derivative is $y^{\prime}(x)=-2 c_{1} \sin 2 x+2 c_{2} \cos 2 x+1 / 2$. Imposing the initial conditions $y(0)=1$ and $y^{\prime}(0)=2$ yields $c_{1}=1$, and $2 c_{2}+1 / 2=2$, whence $c_{2}=3 / 4$. The solution to the initial value problem is therefore $y(x)=\cos 2 x+(3 / 4) \sin 2 x+x / 2$.
7. The complmentary solution is $y_{c}(x)=c_{1} \cos 3 x+c_{2} \sin 3 x$, because the roots of the characteristic equation $r^{2}+9=0$ are $r= \pm 3 i$. To find a particular solution, try $y=A \cos 2 x+B \sin 2 x$. We have $\left(D^{2}+9\right)[A \cos 2 x+B \sin 2 x]=-4 A \cos 2 x-4 B \sin 2 x+9 A \cos 2 x+$ $9 B \sin 2 x=5 A \cos 2 x+5 B \sin 2 x$. In order for this to equal $\sin 2 x$, we must have $A=0$ and $5 B=1$. Thus $B=1 / 5$ and $y_{p}(x)=$ $(1 / 5) \sin 2 x$. The general solution of the nonhomogeneous equation is $y(x)=c_{1} \cos 3 x+c_{2} \sin 3 x+(1 / 5) \sin 2 x$, and its derivative is $y^{\prime}(x)=-3 c_{1} \sin 3 x+3 c_{2} \cos 3 x+(2 / 5) \cos 2 x$. Imposing the initial conditions $y(0)=1$ and $y^{\prime}(0)=0$ yields $1=c_{1}$ and $0=3 c_{2}+2 / 5$, whence $c_{2}=-2 / 15$. The solution to the initial value problem is therefore $y(x)=\cos 3 x-(2 / 15) \sin 3 x+(1 / 5) \sin 2 x$.
