MATH 285 HOMEWORK 5 SOLUTIONS

SECTION 3.2

22. Imposing the initial conditions $y(0)=0$ and $y^{\prime}(0)=10$ in the general solution $y(x)=c_{1} e^{2 x}+c_{2} e^{-2 x}-3$ yields the equations $c_{1}+c_{2}-3=0$, $2 c_{1}-2 c_{2}=10$. The solution is $c_{1}=4, c_{2}=-1$. The desired particular solution is $y(x)=4 e^{2 x}-e^{-2 x}-3$.
23. Imposing the initial conditions $y(0)=3$ and $y^{\prime}(0)=11$ on the general solution $y(x)=c_{1} e^{-x}+c_{2} e^{3 x}-2$ yields the equations $c_{1}+$ $c_{2}-2=3$ and $-c_{1}+3 c_{2}=11$. The solution is $c_{1}=1, c_{2}=4$. The desired particular solution is $y(x)=e^{-x}+4 e^{3 x}-2$.
24. The general solution is $y(x)=c_{1} e^{x} \cos x+c_{2} e^{x} \sin x+x+1$, and its derivative is $y^{\prime}(x)=c_{1}\left(e^{x} \cos x-e^{x} \sin x\right)+c_{2}\left(e^{x} \sin x+e^{x} \cos x\right)+1$. Imposing the initial conditions $y(0)=4$ and $y^{\prime}(0)=8$ on the general solution yields the equations $c_{1}+1=4$ and $c_{1}+c_{2}+1=8$. The solution is $c_{1}=3, c_{2}=4$. The desired particular solution is $y(x)=$ $3 e^{x} \cos x+4 e^{x} \sin x+x+1$.

Section 3.3

3. The characteristic equation is $r^{2}+3 r-10=0$. This factors as $(r+5)(r-2)=0$. The roots are $r=-5,2$, which are real and distinct, so the general solution of the differential equation is $y(x)=$ $c_{1} e^{-5 x}+c_{2} e^{2 x}$.
4. The characteristic equation is $2 r^{2}-7 r+3=0$. The quadratic formula gives $r=(7 \pm \sqrt{49-24}) / 4=(7 \pm 5) / 4=1 / 2,3$. These are real and distinct, so the general solution of the differential equation is $y(x)=c_{1} e^{x / 2}+c_{2} e^{3 x}$.
5. The characteristic equation is $r^{2}+5 r+5=0$. The quadratic formula gives $r=(-5 \pm \sqrt{25-20}) / 2=(-5 \pm \sqrt{5}) / 2$. The roots are real and distinct, so the general solution of the differential equation is $y(x)=c_{1} e^{(-5+\sqrt{5}) x / 2}+c_{2} e^{(-5-\sqrt{5}) x / 2}$.
6. The characteristic equation is $4 r^{2}-12 r+9=0$. The quadratic formula gives $r=\left(12 \pm \sqrt{12^{2}-4 \cdot 4 \cdot 9}\right) / 8=12 / 8=3 / 2$. Thus there is a single root of multiplicity two. The general solution is therefore $y(x)=c_{1} e^{3 x / 2}+c_{2} x e^{3 x / 2}$.
7. The characteristic equation is $r^{4}-8 r^{3}+16 r^{2}=0$. Factoring out r^{2} gives $r^{2}\left(r^{2}-8 r+16\right)=0$, and $r^{2}-8 r+16=(r-4)^{2}$. Thus the characteristic equation is $r^{2}(r-4)^{2}=0$, which has two roots $r=0$ and $r=4$, each with multiplicity two. Therefore the general solution is $y(x)=c_{1}+c_{2} x+c_{3} e^{4 x}+c_{4} x e^{4 x}$.
8. The characteristic equation is $r^{4}-8 r^{2}+16=0$. Writing this as $\left(r^{2}\right)^{2}-8\left(r^{2}\right)+16=0$, we can think of it as a quadratic equation for r^{2}. The solution is then $r^{2}=4$, and $r=2,-2$, each of which is a repeated root. The full factorization is $r^{4}-8 r^{2}+16=\left(r^{2}-4\right)^{2}=$ $(r-2)^{2}(r+2)^{2}$. The general solution is $y(x)=c_{1} e^{2 x}+c_{2} x e^{2 x}+$ $c_{3} e^{-2 x}+c_{4} x e^{-2 x}$.
9. In order for $y(x)=\left(A+B x+C x^{2}\right) e^{2 x}$ to be the general solution, the characteristic equation would need to have a root $r=2$ of multiplicity three. For instance, $(r-2)^{3}=0$. Expanding this out gives $r^{3}-6 r^{2}+12 r-8=0$. The corresponding differential equation is $y^{\prime \prime \prime}-6 y^{\prime \prime}+12 y^{\prime}-8 y=0$.
