MATH 285 HOMEWORK 4 SOLUTIONS

SECTION 3.1

3. We have that $y_{1}^{\prime}=-2 \sin 2 x$ and $y_{1}^{\prime \prime}=-4 \cos 2 x$. Thus $y_{1}^{\prime \prime}+4 y_{1}=$ $-4 \cos 2 x+4 \cos 2 x=0$. Similarly $y_{2}^{\prime \prime}=-4 \sin 2 x$, so $y_{2}^{\prime \prime}+4 y_{2}=$ $-4 \sin 2 x+4 \sin 2 x=0$. Imposing the initial conditions $y(0)=3$ and $y^{\prime}(0)=8$ on the general solution $y(x)=c_{1} \cos 2 x+c_{2} \sin 2 x$ yields the equations

$$
3=y(0)=c_{1}, \quad 8=y^{\prime}(0)=2 c_{2}
$$

with solution $c_{1}=3, c_{2}=4$. Hence the particular solution is $y(x)=$ $3 \cos 2 x+4 \sin 2 x$.
13. We have that $y_{1}^{\prime}=1$ and $y_{1}^{\prime \prime}=0$, so $x^{2} y_{1}^{\prime \prime}-2 x y_{1}^{\prime}+2 y_{1}=0-2 x+2 x=$ 0. Also, $y_{2}^{\prime}=2 x$ and $y_{2}^{\prime \prime}=2$, so $x^{2} y_{2}^{\prime \prime}-2 x y_{2}^{\prime}+2 y_{2}=2 x^{2}-2 x(2 x)+$ $2 x^{2}=0$. Thus the general solution is $y(x)=c_{1} x+c_{2} x^{2}$. Imposing the initial conditions $y(1)=3$ and $y^{\prime}(1)=1$ yields the equations

$$
3=y(1)=c_{1}+c_{2}, \quad 1=y^{\prime}(1)=c_{1}+2 c_{2}
$$

Solving this system gives $c_{1}=5, c_{2}=-2$. Hence the particular solution is $y(x)=5 x-2 x^{2}$.
24. A trig identity for $\cos 2 x$ says

$$
\cos 2 x=1-2 \sin ^{2} x
$$

meaning that $2 \sin ^{2} x=1-\cos 2 x$. So if $f(x)=\sin ^{2} x$ and $g(x)=$ $1-\cos 2 x$, then $g(x)=2 f(x)$. Since $f(x)$ and $g(x)$ are proportional, they are linearly dependent.
33. The characteristic equation is $r^{2}-3 r+2=0$. The solutions are $r=1,2$. Thus $y_{1}(x)=e^{x}$ and $y_{2}(x)=e^{2 x}$ are solutions, and the general solution is $y(x)=c_{1} e^{x}+c_{2} e^{2 x}$.
35. The characteristic equation is $r^{2}+5 r=0$. The solutions are $r=$ $0,-5$. Thus $y_{1}(x)=e^{0 x}=1$ and $y_{2}(x)=e^{-5 x}$ are solutions, and the general solution is $y(x)=c_{1}+c_{2} e^{-5 x}$.
46. We work backwards from the solution $y(x)=c_{1} e^{10 x}+c_{2} e^{100 x}$. The roots of the characteristic equation must be $r=10,100$, and such a characteristic equation would be $(r-10)(r-100)=0$, or $r^{2}-110 r+$ $1000=0$. Thus $y^{\prime \prime}-110 y^{\prime}+1000 y=0$ is a differential equation with the original $y(x)$ as its general solution.

Section 3.2

3. Take $1 \cdot f(x)+0 \cdot g(x)+0 \cdot h(x)=1 \cdot 0+0 \cdot \sin x+0 \cdot e^{x}=0$.
4. We know that $\cos 2 x=2 \cos ^{2} x-1$. Multiply this equation by 17 to get $17 \cos 2 x=34 \cos ^{2} x-17$. Thus $17-34 \cos ^{2} x+17 \cos 2 x=0$. Thus we find

$$
1 \cdot f(x)+(-34) \cdot g(x)+17 \cdot h(x)=0
$$

9. Suppose that c_{1}, c_{2}, c_{3} are constants such that $c_{1} e^{x}+c_{2} \cos x+c_{3} \sin x=$ 0 for all values of x. Plugging in $x=0$ gives $c_{1}+c_{2}=0$. Taking the derivative gives $c_{1} e^{x}-c_{2} \sin x+c_{3} \cos x=0$, and plugging in $x=0$ then gives $c_{1}+c_{3}=0$. Taking the derivative again gives $c_{1} e^{x}-c_{2} \cos x-c_{3} \sin x=0$, and plugging in $x=0$ gives $c_{1}-c_{2}=0$.
So we have the three equations

$$
c_{1}+c_{2}=0, \quad c_{1}+c_{3}=0, \quad c_{1}-c_{2}=0
$$

The third implies $c_{1}=c_{2}$. Using this in the first we get $c_{1}=0$ and $c_{2}=0$. Then the second equation implies $c_{3}=0$ as well. Since the three constants c_{1}, c_{2}, c_{3} are forced to be zero, $e^{x}, \cos x$, and $\sin x$ are linearly independent.
13. The general solution is $y(x)=c_{1} e^{x}+c_{2} e^{-x}+c_{3} e^{-2 x}$. The derivatives are $y^{\prime}(x)=c_{1} e^{x}-c_{2} e^{-x}-2 c_{3} e^{-2 x}$ and $y^{\prime \prime}(x)=c_{1} e^{x}+c_{2} e^{-x}+4 c_{3} e^{-2 x}$. The initial conditions $y(0)=1, y^{\prime}(0)=2, y^{\prime \prime}(0)=0$ imply

$$
1=c_{1}+c_{2}+c_{3}, \quad 2=c_{1}-c_{2}-2 c_{3}, \quad 0=c_{1}+c_{2}+4 c_{3}
$$

Subtracting the first equation from the third gives $-1=3 c_{3}$, so $c_{3}=-1 / 3$. Then the equations become

$$
c_{1}+c_{2}=4 / 3, \quad c_{1}-c_{2}=4 / 3
$$

Thus $c_{1}=4 / 3$ and $c_{2}=0$. The desired particular solution is $y(x)=$ $(4 / 3) e^{x}-(1 / 3) e^{-2 x}$.

