MATH 285 HOMEWORK 13 SOLUTIONS

Section 9.7

1. As usual, considering a separable solution $u(x, y)=X(x) Y(y)$ in Laplace's equation leads to equations of the form

$$
\frac{d^{2} X}{d x^{2}}-\lambda X=0, \quad \frac{d^{2} Y}{d y^{2}}+\lambda Y=0
$$

where λ is the separation constant. [Your answer may have $-\lambda$ in place of λ, that is, you may have written these equations with the sign of the λ-terms flipped. That is perfectly OK, but it will affect some of the later steps where we make assumptions about the sign of λ. -JP]

The boundary conditions $u(x, 0)=0$ and $u(x, b)=0$ translate into the endpoint conditions $Y(0)=0, Y(b)=0$. Thus we have an eigenvalue problem for Y :

$$
\frac{d^{2} Y}{d y^{2}}+\lambda Y=0, \quad Y(0)=0, \quad Y(b)=0
$$

The eigenvalues and eigenfunctions are therefore

$$
\lambda_{n}=\left(\frac{n \pi}{b}\right)^{2}, \quad Y_{n}(y)=\sin \frac{n \pi y}{b}
$$

The corresponding function $X_{n}(x)$ must satisfy

$$
\frac{d^{2} X_{n}}{d x^{2}}-\left(\frac{n \pi}{b}\right)^{2} X_{n}=0
$$

The general solution of this is

$$
X_{n}(x)=A_{n} \cosh \frac{n \pi x}{b}+B_{n} \sinh \frac{n \pi x}{b}
$$

[There is another way to write this general solution, namely as

$$
X_{n}(x)=A_{n} \exp \left(\frac{n \pi x}{b}\right)+B_{n} \exp \left(-\frac{n \pi x}{b}\right)
$$

It is perfectly fine to use this instead, although it will make some of the later steps look a little different. -JP] The boundary condition $u(0, y)=0$ translates into $X_{n}(0)=0$, so $A_{n}=0$. Thus the n-th separable solution is

$$
X_{n}(x) Y_{n}(y)=B_{n} \sinh \frac{n \pi x}{b} \sin \frac{n \pi y}{b}
$$

The general solution is the series

$$
u(x, y)=\sum_{n=1}^{\infty} B_{n} \sinh \frac{n \pi x}{b} \sin \frac{n \pi y}{b}
$$

In order to satisfy the last boundary condition $u(a, y)=g(y)$, we must match

$$
u(a, y)=\sum_{n=1}^{\infty} B_{n} \sinh \frac{n \pi a}{b} \sin \frac{n \pi y}{b}=g(y)
$$

This means that the quantity $B_{n} \sinh \frac{n \pi a}{b}$ must equal the n-th coefficient of the Fourier sine series of $g(y)$ on the interval $[0, b]$. That is, if we write

$$
g(y)=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi y}{b}, \quad b_{n}=\frac{2}{b} \int_{0}^{b} g(y) \sin \frac{n \pi y}{b} d y
$$

we must have $B_{n} \sinh \frac{n \pi a}{b}=b_{n}$. Thus

$$
B_{n}=\frac{b_{n}}{\sinh (n \pi a / b)}
$$

The full solution is

$$
u(x, y)=\sum_{n=1}^{\infty} b_{n} \frac{\sinh (n \pi x / b)}{\sinh (n \pi a / b)} \sin \frac{n \pi y}{b}
$$

where b_{n} is the sine coefficient of $g(y)$ as above.

SECtion 10.1

3. The problem

$$
y^{\prime \prime}+\lambda y=0, \quad y^{\prime}(0)=0, \quad h y(L)+y^{\prime}(L)=0
$$

with domain $0<x<L$ and $h>0$ satisfies all parts of Theorem 1 on p. 638. Thus there are no negative eigenvalues.

To check $\lambda=0: y(x)=A x+B$. Endpoint condition $y^{\prime}(0)=$ 0 forces $A=0$, so $y(x)=B$ is a constant function. But then $h y(L)+y^{\prime}(L)=h B+0=0$ forces $B=0$ as well, so $\lambda=0$ is not an eigenvalue.

To check $\lambda>0$: write $\lambda=\alpha^{2}$. Then $y(x)=A \cos \alpha x+B \sin \alpha x$, and $y^{\prime}(x)=-A \alpha \sin \alpha x+B \alpha \cos \alpha x$. The condition $y^{\prime}(0)=0$ means $B \alpha=0$, forcing $B=0$, and so $y(x)=A \cos \alpha x$. The condition $h y(L)+y^{\prime}(L)=0$ becomes

$$
h A \cos \alpha L-A \alpha \sin \alpha L=0
$$

This forces $A=0$ as well unless $h \cos \alpha L-\alpha \sin \alpha L=0$. Setting $\beta=\alpha L$, we can write this condition as

$$
\begin{gathered}
h \cos \beta=(\beta / L) \sin \beta \\
\beta \tan \beta=h L
\end{gathered}
$$

or

$$
\tan \beta=h L / \beta
$$

One can see from a graph that there are infinitely many positive solutions of this equation $\beta_{1}<\beta_{2}<\beta_{3}<\cdots$. The eigenvalues are therefore

$$
\lambda_{n}=\alpha_{n}^{2}=\left(\beta_{n} / L\right)^{2}
$$

and an eigenfunction for λ_{n} is

$$
y_{n}(x)=\cos \alpha_{n} x=\cos \frac{\beta_{n} x}{L}
$$

To estimate the values of β_{n} for large n, note that if β is large, then $h L / \beta$ is close to zero. Therefore, the solution of $\tan \beta=h L / \beta$ is close to a solution of $\tan \beta=0$, which would be $n \pi$ for an integer n. In fact, if one is careful about the indexing one finds $\beta_{n} \approx(n-1) \pi$ for large n.
8. This is a continuation of the previous problem. By equations (23), (25) on p. 641 (with $r(x)=1$), there is an eigenfunction series

$$
f(x)=\sum_{n=1}^{\infty} c_{n} y_{n}(x)=\sum_{n=1}^{\infty} c_{n} \cos \frac{\beta_{n} x}{L}
$$

where the coefficients are given by

$$
c_{n}=\frac{\int_{0}^{L} f(x) y_{n}(x) d x}{\int_{0}^{L} y_{n}(x)^{2} d x}=\frac{\int_{0}^{L} f(x) \cos \frac{\beta_{n} x}{L} d x}{\int_{0}^{L} \cos ^{2} \frac{\beta_{n} x}{L} d x}
$$

We compute for $f(x)=1$:

$$
\begin{gathered}
\int_{0}^{L} 1 \cdot \cos \frac{\beta_{n} x}{L} d x=\left[\frac{L}{\beta_{n}} \sin \frac{\beta_{n} x}{L}\right]_{0}^{L}=\frac{L}{\beta_{n}} \sin \beta_{n} \\
\int_{0}^{L} \cos ^{2} \frac{\beta_{n} x}{L} d x=\int_{0}^{L} \frac{1}{2}\left(1+\cos \frac{2 \beta_{n} x}{L}\right) d x \\
= \\
\frac{1}{2}\left[x+\frac{L}{2 \beta_{n}} \sin \frac{2 \beta_{n} x}{L}\right]_{0}^{L}=\frac{1}{2}\left(L+\frac{L}{2 \beta_{n}} \sin 2 \beta_{n}\right)
\end{gathered}
$$

So

$$
c_{n}=\frac{\frac{L}{\beta_{n}} \sin \beta_{n}}{\frac{1}{2}\left(L+\frac{L}{2 \beta_{n}} \sin 2 \beta_{n}\right)}=\frac{4 \sin \beta_{n}}{2 \beta_{n}+\sin 2 \beta_{n}}
$$

The desired eigenfunction expansion is

$$
1=\sum_{n=1}^{\infty} \frac{4 \sin \beta_{n}}{2 \beta_{n}+\sin 2 \beta_{n}} \cos \frac{\beta_{n} x}{L} \quad(0<x<L)
$$

