MATH 285 HOMEWORK 13 SOLUTIONS

Section 9.7

1. As usual, considering a separable solution u(x,y) = X(x)Y(y) in Laplace's equation leads to equations of the form

$$\frac{d^2X}{dx^2} - \lambda X = 0, \quad \frac{d^2Y}{dy^2} + \lambda Y = 0$$

where λ is the separation constant. [Your answer may have $-\lambda$ in place of λ , that is, you may have written these equations with the sign of the λ -terms flipped. That is perfectly OK, but it will affect some of the later steps where we make assumptions about the sign of λ . -JP]

The boundary conditions u(x,0) = 0 and u(x,b) = 0 translate into the endpoint conditions Y(0) = 0, Y(b) = 0. Thus we have an eigenvalue problem for Y:

$$\frac{d^2Y}{dy^2} + \lambda Y = 0, \quad Y(0) = 0, \quad Y(b) = 0$$

The eigenvalues and eigenfunctions are therefore

$$\lambda_n = \left(\frac{n\pi}{b}\right)^2, \quad Y_n(y) = \sin\frac{n\pi y}{b}$$

The corresponding function $X_n(x)$ must satisfy

$$\frac{d^2 X_n}{dx^2} - \left(\frac{n\pi}{b}\right)^2 X_n = 0$$

The general solution of this is

$$X_n(x) = A_n \cosh \frac{n\pi x}{b} + B_n \sinh \frac{n\pi x}{b}$$

[There is another way to write this general solution, namely as

$$X_n(x) = A_n \exp\left(\frac{n\pi x}{b}\right) + B_n \exp\left(-\frac{n\pi x}{b}\right)$$

It is perfectly fine to use this instead, although it will make some of the later steps look a little different. -JP] The boundary condition u(0, y) = 0 translates into $X_n(0) = 0$, so $A_n = 0$. Thus the *n*-th separable solution is

$$X_n(x)Y_n(y) = B_n \sinh \frac{n\pi x}{b} \sin \frac{n\pi y}{b}$$

The general solution is the series

$$u(x,y) = \sum_{n=1}^{\infty} B_n \sinh \frac{n\pi x}{b} \sin \frac{n\pi y}{b}$$

In order to satisfy the last boundary condition u(a, y) = g(y), we must match

$$u(a,y) = \sum_{n=1}^{\infty} B_n \sinh \frac{n\pi a}{b} \sin \frac{n\pi y}{b} = g(y)$$

This means that the quantity $B_n \sinh \frac{n\pi a}{b}$ must equal the *n*-th coefficient of the Fourier sine series of g(y) on the interval [0, b]. That is, if we write

$$g(y) = \sum_{n=1}^{\infty} b_n \sin \frac{n\pi y}{b}, \quad b_n = \frac{2}{b} \int_0^b g(y) \sin \frac{n\pi y}{b} \, dy$$

we must have $B_n \sinh \frac{n\pi a}{b} = b_n$. Thus

$$B_n = \frac{b_n}{\sinh(n\pi a/b)}$$

The full solution is

$$u(x,y) = \sum_{n=1}^{\infty} b_n \frac{\sinh(n\pi x/b)}{\sinh(n\pi a/b)} \sin\frac{n\pi y}{b}$$

where b_n is the sine coefficient of g(y) as above.

Section 10.1

3. The problem

$$y'' + \lambda y = 0$$
, $y'(0) = 0$, $hy(L) + y'(L) = 0$

with domain 0 < x < L and h > 0 satisfies all parts of Theorem 1 on p. 638. Thus there are no negative eigenvalues.

To check $\lambda = 0$: y(x) = Ax + B. Endpoint condition y'(0) = 0 forces A = 0, so y(x) = B is a constant function. But then hy(L) + y'(L) = hB + 0 = 0 forces B = 0 as well, so $\lambda = 0$ is not an eigenvalue.

To check $\lambda > 0$: write $\lambda = \alpha^2$. Then $y(x) = A \cos \alpha x + B \sin \alpha x$, and $y'(x) = -A\alpha \sin \alpha x + B\alpha \cos \alpha x$. The condition y'(0) = 0 means $B\alpha = 0$, forcing B = 0, and so $y(x) = A \cos \alpha x$. The condition hy(L) + y'(L) = 0 becomes

$$hA\cos\alpha L - A\alpha\sin\alpha L = 0$$

This forces A = 0 as well unless $h \cos \alpha L - \alpha \sin \alpha L = 0$. Setting $\beta = \alpha L$, we can write this condition as

$$h\cos\beta = (\beta/L)\sin\beta,$$

$$\beta \tan \beta = hL,$$

$$\tan\beta = hL/\beta$$

One can see from a graph that there are infinitely many positive solutions of this equation $\beta_1 < \beta_2 < \beta_3 < \cdots$. The eigenvalues are therefore

$$\lambda_n = \alpha_n^2 = (\beta_n / L)^2$$

and an eigenfunction for λ_n is

$$y_n(x) = \cos \alpha_n x = \cos \frac{\beta_n x}{L}$$

To estimate the values of β_n for large n, note that if β is large, then hL/β is close to zero. Therefore, the solution of $\tan \beta = hL/\beta$ is close to a solution of $\tan \beta = 0$, which would be $n\pi$ for an integer n. In fact, if one is careful about the indexing one finds $\beta_n \approx (n-1)\pi$ for large n.

8. This is a continuation of the previous problem. By equations (23), (25) on p. 641 (with r(x) = 1), there is an eigenfunction series

$$f(x) = \sum_{n=1}^{\infty} c_n y_n(x) = \sum_{n=1}^{\infty} c_n \cos \frac{\beta_n x}{L}$$

where the coefficients are given by

$$c_n = \frac{\int_0^L f(x)y_n(x) \, dx}{\int_0^L y_n(x)^2 \, dx} = \frac{\int_0^L f(x) \cos\frac{\beta_n x}{L} \, dx}{\int_0^L \cos^2\frac{\beta_n x}{L} \, dx}$$

We compute for f(x) = 1:

$$\int_0^L 1 \cdot \cos \frac{\beta_n x}{L} dx = \left[\frac{L}{\beta_n} \sin \frac{\beta_n x}{L}\right]_0^L = \frac{L}{\beta_n} \sin \beta_n$$
$$\int_0^L \cos^2 \frac{\beta_n x}{L} dx = \int_0^L \frac{1}{2} (1 + \cos \frac{2\beta_n x}{L}) dx$$
$$= \frac{1}{2} \left[x + \frac{L}{2\beta_n} \sin \frac{2\beta_n x}{L}\right]_0^L = \frac{1}{2} \left(L + \frac{L}{2\beta_n} \sin 2\beta_n\right)$$

 So

$$c_n = \frac{\frac{L}{\beta_n} \sin \beta_n}{\frac{1}{2} \left(L + \frac{L}{2\beta_n} \sin 2\beta_n \right)} = \frac{4 \sin \beta_n}{2\beta_n + \sin 2\beta_n}$$

The desired eigenfunction expansion is

r

$$1 = \sum_{n=1}^{\infty} \frac{4\sin\beta_n}{2\beta_n + \sin 2\beta_n} \cos\frac{\beta_n x}{L} \quad (0 < x < L)$$

or