
MATH 285 HOMEWORK 13 SOLUTIONS

Section 9.7

1. As usual, considering a separable solution u(x, y) = X(x)Y (y) in
Laplace’s equation leads to equations of the form

d2X

dx2
− λX = 0,

d2Y

dy2
+ λY = 0

where λ is the separation constant. [Your answer may have −λ in
place of λ, that is, you may have written these equations with the
sign of the λ-terms flipped. That is perfectly OK, but it will affect
some of the later steps where we make assumptions about the sign
of λ. -JP]

The boundary conditions u(x, 0) = 0 and u(x, b) = 0 translate
into the endpoint conditions Y (0) = 0, Y (b) = 0. Thus we have an
eigenvalue problem for Y :

d2Y

dy2
+ λY = 0, Y (0) = 0, Y (b) = 0

The eigenvalues and eigenfunctions are therefore

λn =
(nπ
b

)2
, Yn(y) = sin

nπy

b

The corresponding function Xn(x) must satisfy

d2Xn

dx2
−
(nπ
b

)2
Xn = 0

The general solution of this is

Xn(x) = An cosh
nπx

b
+Bn sinh

nπx

b

[There is another way to write this general solution, namely as

Xn(x) = An exp
(nπx

b

)
+Bn exp

(
−nπx

b

)
It is perfectly fine to use this instead, although it will make some of
the later steps look a little different. -JP] The boundary condition
u(0, y) = 0 translates into Xn(0) = 0, so An = 0. Thus the n-th
separable solution is

Xn(x)Yn(y) = Bn sinh
nπx

b
sin

nπy

b
1



2

The general solution is the series

u(x, y) =
∞∑
n=1

Bn sinh
nπx

b
sin

nπy

b

In order to satisfy the last boundary condition u(a, y) = g(y), we
must match

u(a, y) =
∞∑
n=1

Bn sinh
nπa

b
sin

nπy

b
= g(y)

This means that the quantity Bn sinh nπa
b must equal the n-th coef-

ficient of the Fourier sine series of g(y) on the interval [0, b]. That
is, if we write

g(y) =
∞∑
n=1

bn sin
nπy

b
, bn =

2

b

∫ b

0
g(y) sin

nπy

b
dy

we must have Bn sinh nπa
b = bn. Thus

Bn =
bn

sinh(nπa/b)

The full solution is

u(x, y) =
∞∑
n=1

bn
sinh(nπx/b)

sinh(nπa/b)
sin

nπy

b

where bn is the sine coefficient of g(y) as above.

Section 10.1

3. The problem

y′′ + λy = 0, y′(0) = 0, hy(L) + y′(L) = 0

with domain 0 < x < L and h > 0 satisfies all parts of Theorem 1
on p. 638. Thus there are no negative eigenvalues.

To check λ = 0: y(x) = Ax + B. Endpoint condition y′(0) =
0 forces A = 0, so y(x) = B is a constant function. But then
hy(L) + y′(L) = hB + 0 = 0 forces B = 0 as well, so λ = 0 is not an
eigenvalue.

To check λ > 0: write λ = α2. Then y(x) = A cosαx + B sinαx,
and y′(x) = −Aα sinαx+Bα cosαx. The condition y′(0) = 0 means
Bα = 0, forcing B = 0, and so y(x) = A cosαx. The condition
hy(L) + y′(L) = 0 becomes

hA cosαL−Aα sinαL = 0

This forces A = 0 as well unless h cosαL − α sinαL = 0. Setting
β = αL, we can write this condition as

h cosβ = (β/L) sinβ,

β tanβ = hL,
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or
tanβ = hL/β

One can see from a graph that there are infinitely many positive
solutions of this equation β1 < β2 < β3 < · · · . The eigenvalues are
therefore

λn = α2
n = (βn/L)2

and an eigenfunction for λn is

yn(x) = cosαnx = cos
βnx

L
To estimate the values of βn for large n, note that if β is large,

then hL/β is close to zero. Therefore, the solution of tanβ = hL/β
is close to a solution of tanβ = 0, which would be nπ for an integer
n. In fact, if one is careful about the indexing one finds βn ≈ (n−1)π
for large n.

8. This is a continuation of the previous problem. By equations (23),
(25) on p. 641 (with r(x) = 1), there is an eigenfunction series

f(x) =

∞∑
n=1

cnyn(x) =

∞∑
n=1

cn cos
βnx

L

where the coefficients are given by

cn =

∫ L
0 f(x)yn(x) dx∫ L

0 yn(x)2 dx
=

∫ L
0 f(x) cos βnxL dx∫ L

0 cos2 βnxL dx

We compute for f(x) = 1:∫ L

0
1 · cos

βnx

L
dx =

[
L

βn
sin

βnx

L

]L
0

=
L

βn
sinβn∫ L

0
cos2

βnx

L
dx =

∫ L

0

1

2
(1 + cos

2βnx

L
) dx

=
1

2

[
x+

L

2βn
sin

2βnx

L

]L
0

=
1

2

(
L+

L

2βn
sin 2βn

)
So

cn =

L
βn

sinβn

1
2

(
L+ L

2βn
sin 2βn

) =
4 sinβn

2βn + sin 2βn

The desired eigenfunction expansion is

1 =

∞∑
n=1

4 sinβn
2βn + sin 2βn

cos
βnx

L
(0 < x < L)


