MATH 285 HOMEWORK 12 SOLUTIONS

Section 9.6

1. The general solution of the problem $y_{t t}=4 y_{x x}, y(0, t)=0, y(\pi, t)=$ 0 is

$$
y(x, t)=\sum_{n=1}^{\infty}\left(A_{n} \cos 2 n t+B_{n} \sin 2 n t\right) \sin n x
$$

This is obtained from the general solution derived in the lecture by setting $c=2$ and $L=\pi$. We have to match the initial conditions

$$
\begin{gathered}
y(x, 0)=\sum_{n=1}^{\infty} A_{n} \sin n x=\frac{1}{10} \sin 2 x \\
y_{t}(x, 0)=\sum_{n=1}^{\infty} 2 n B_{n} \sin n x=0
\end{gathered}
$$

Thus we take $A_{2}=1 / 10$, all other $A_{n}=0$, and all $B_{n}=0$. The final result is

$$
y(x, t)=\frac{1}{10} \cos 4 t \sin 2 x
$$

3. In this problem we use the same general solution with $c=\sqrt{1 / 4}=$ $1 / 2$ and $L=\pi$. Thus

$$
y(x, t)=\sum_{n=1}^{\infty}\left(A_{n} \cos \frac{n t}{2}+B_{n} \sin \frac{n t}{2}\right) \sin n x
$$

We have to match the initial conditions

$$
\begin{gathered}
y(x, 0)=\sum_{n=1}^{\infty} A_{n} \sin n x=\frac{1}{10} \sin x \\
y_{t}(x, 0)=\sum_{n=1}^{\infty} \frac{n}{2} B_{n} \sin n x=\frac{1}{10} \sin x
\end{gathered}
$$

Thus we take $A_{1}=1 / 10$, all other $A_{n}=0$, and $B_{1}=1 / 5$, all other $B_{n}=0$. The result is

$$
y(x, t)=\left(\frac{1}{10} \cos \frac{t}{2}+\frac{1}{5} \sin \frac{t}{2}\right) \sin x
$$

5. In this problem $c=5$ and $L=3$. Thus the general solution is

$$
y(x, t)=\sum_{n=1}^{\infty}\left(A_{n} \cos \frac{5 n \pi t}{3}+B_{n} \sin \frac{5 n \pi t}{3}\right) \sin \frac{n \pi x}{3}
$$

This needs to match the initial conditions

$$
\begin{gathered}
y(x, 0)=\sum_{n=1}^{\infty} A_{n} \sin \frac{n \pi x}{3}=\frac{1}{4} \sin \pi x \\
y_{t}(x, 0)=\sum_{n=1}^{\infty} \frac{5 n \pi}{3} B_{n} \sin \frac{n \pi x}{3}=10 \sin 2 \pi x
\end{gathered}
$$

In the first equation, we see that the term on the right corresponds to $n=3$, so we take $A_{3}=1 / 4$ and all other $A_{n}=0$. In the second equation, the term on the right corresponds to $n=6$, so we take $B_{n}=0$ for all n other than $n=6$, whereas

$$
\frac{5 \cdot 6 \pi}{3} B_{6}=10
$$

Thus $B_{6}=1 / \pi$. The result is

$$
y(x, t)=\frac{1}{4} \cos 5 \pi t \sin \pi x+\frac{1}{\pi} \sin 10 \pi t \sin 2 \pi x
$$

8. In this problem $c=2$ and $L=\pi$, so the general solution is

$$
y(x, t)=\sum_{n=1}^{\infty}\left(A_{n} \cos 2 n t+B_{n} \sin 2 n t\right) \sin n x
$$

We have to match the initial conditions

$$
\begin{aligned}
& y(x, 0)=\sum_{n=1}^{\infty} A_{n} \sin n x=\sin x \\
& y_{t}(x, 0)=\sum_{n=1}^{\infty} 2 n B_{n} \sin n x=1
\end{aligned}
$$

The first equation means we take $A_{1}=1$ and all other $A_{n}=0$. The second equation means that the number $2 n B_{n}$ must be the nth coefficient of the sine series for the function 1 on the interval $0<x<\pi$. The odd periodic extension is a square wave, and its Fourier coefficients are $b_{n}=4 /(n \pi)$ for odd n, and $b_{n}=0$ for even n.

$$
\begin{gathered}
2 n B_{n}=4 /(n \pi), \text { for odd } n \\
2 n B_{n}=0, \text { for even } n
\end{gathered}
$$

Thus $B_{n}=0$ for even n, and $B_{n}=2 /\left(n^{2} \pi\right)$ for odd n. The result is

$$
y(x, t)=\cos 2 t \sin x+\sum_{n \text { odd }} \frac{2}{n^{2} \pi} \sin 2 n t \sin n x
$$

16. Suppose $u=x+$ at and $v=x$-at. Thus $x=(u+v) / 2$ and $t=(u-v) /(2 a)$. Thus we compute $\partial y / \partial u$

$$
\frac{\partial y}{\partial u}=\frac{\partial y}{\partial x} \frac{\partial x}{\partial u}+\frac{\partial y}{\partial t} \frac{\partial t}{\partial u}=\frac{1}{2} \frac{\partial y}{\partial x}+\frac{1}{2 a} \frac{\partial y}{\partial t}
$$

$$
\begin{gathered}
\frac{\partial^{2} y}{\partial v \partial u}=\frac{\partial}{\partial v}\left[\frac{1}{2} \frac{\partial y}{\partial x}+\frac{1}{2 a} \frac{\partial y}{\partial t}\right]=\frac{\partial}{\partial x}\left[\frac{1}{2} \frac{\partial y}{\partial x}+\frac{1}{2 a} \frac{\partial y}{\partial t}\right] \frac{\partial x}{\partial v}+\frac{\partial}{\partial t}\left[\frac{1}{2} \frac{\partial y}{\partial x}+\frac{1}{2 a} \frac{\partial y}{\partial t}\right] \frac{\partial t}{\partial v} \\
=\frac{1}{2} \frac{\partial}{\partial x}\left[\frac{1}{2} \frac{\partial y}{\partial x}+\frac{1}{2 a} \frac{\partial y}{\partial t}\right]-\frac{1}{2 a} \frac{\partial}{\partial t}\left[\frac{1}{2} \frac{\partial y}{\partial x}+\frac{1}{2 a} \frac{\partial y}{\partial t}\right] \\
=\frac{1}{4} \frac{\partial^{2} y}{\partial x^{2}}+\frac{1}{4 a} \frac{\partial^{2} y}{\partial x \partial t}-\frac{1}{4 a} \frac{\partial^{2} y}{\partial t \partial x}-\frac{1}{4 a^{2}} \frac{\partial^{2} y}{\partial t^{2}} \\
=\frac{1}{4} \frac{\partial^{2} y}{\partial x^{2}}-\frac{1}{4 a^{2}} \frac{\partial^{2} y}{\partial t^{2}}=\frac{1}{4 a^{2}}\left[a^{2} \frac{\partial^{2} y}{\partial x^{2}}-\frac{\partial^{2} y}{\partial t^{2}}\right]
\end{gathered}
$$

Thus

$$
a^{2} \frac{\partial^{2} y}{\partial x^{2}}-\frac{\partial^{2} y}{\partial t^{2}}=0 \text { if and only if } \frac{\partial^{2} y}{\partial v \partial u}=0
$$

That is to say, with respect to the coordinates (u, v), the wave equation is $y_{u v}=0$.

Next, suppose that $y(u, v)$ is a solution of the wave equation, thus $y_{u v}=0$, or

$$
\frac{\partial}{\partial v}\left(y_{u}\right)=0
$$

This means that $y_{u}(u, v)$ is a function that does not depend on v, but which may depend on u. Thus $y_{u}=f(u)$ for some function $f(u)$. Now we have the equation

$$
\frac{\partial y}{\partial u}=f(u)
$$

By integrating, we find that

$$
y(u, v)=\int f(u) d u+G(v)
$$

where the constant of integration with respect to u may depend on v. Letting $F(u)=\int f(u) d u$, we have found that $y(u, v)$ must have the form

$$
y(u, v)=F(u)+G(v)
$$

Changing back to (x, t) by the formulas $u=x+a t, v=x-a t$, we find

$$
y(x, t)=F(x+a t)+G(x-a t)
$$

Thus, every solution of the wave equation $y_{t t}=a^{2} y_{x x}$ has this form, the sum of a left-moving and a right-moving wave at speed a.

