MATH 285 HOMEWORK 11 SOLUTIONS

Section 9.5

1. Since this is a heat equation problem with zero endpoint temperatures, we konw from Theorem 1 on page 604 , with $L=\pi$ and $k=3$, that

$$
u(x, t)=\sum_{n=1}^{\infty} b_{n} e^{-3 n^{2} t} \sin n x
$$

For some coefficients b_{n}. The initial condition $u(x, 0)=4 \sin 2 x$ becomes

$$
4 \sin 2 x=\sum_{n=1}^{\infty} b_{n} \sin n x
$$

This equation is satisfied if $b_{2}=4$ and $b_{n}=0$ for all $n \neq 4$. Thus the solution is

$$
u(x, t)=4 e^{-12 t} \sin 2 x
$$

3. This is a heat equation problem with zero endpoint temperatures, so we know from Theorem 1, with $L=1$ and $k=2$, that

$$
u(x, t)=\sum_{n=1}^{\infty} b_{n} e^{-2 n^{2} \pi^{2} t} \sin n \pi x
$$

The initial condition $u(x, 0)=5 \sin \pi x-\frac{1}{5} \sin 3 \pi x$ becomes

$$
5 \sin \pi x-\frac{1}{5} \sin 3 \pi x=\sum_{n=1}^{\infty} b_{n} \sin n \pi x
$$

Thus we must take $b_{1}=5, b_{3}=-1 / 5$, and all other $b_{n}=0$. The solution thus contains only the $n=1$ and $n=3$ terms, and is

$$
u(x, t)=5 e^{-2 \pi^{2} t}-\frac{1}{5} e^{-18 \pi^{2} t} \sin 3 \pi x
$$

5. This is a heat equation problem with insulated ends, so we know from Theorem 2 on page 607 , with $L=3$ and $k=2$, that

$$
u(x, t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} e^{\frac{-2 n^{2} \pi^{2} t}{9}} \cos \frac{n \pi x}{3}
$$

The initial condition $u(x, 0)=4 \cos \frac{2 \pi x}{3}-2 \cos \frac{4 \pi x}{3}$ becomes

$$
4 \cos \frac{2 \pi x}{3}-2 \cos \frac{4 \pi x}{3}=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{3}
$$

Thus we must take $a_{0}=0, a_{2}=4, a_{4}=-2$, and all other $a_{n}=0$.
The solution only contains the $n=2$ and $n=4$ terms, and is

$$
u(x, t)=4 e^{\frac{-8 \pi^{2} t}{9}} \cos \frac{2 \pi x}{3}-2 e^{\frac{-32 \pi^{2} t}{9}} \cos \frac{4 \pi x}{3}
$$

10. This is a zero endpoint temperature problem with $L=10$ and $k=$ $1 / 5$, so we have

$$
u(x, t)=\sum_{n=1}^{\infty} b_{n} e^{-n^{2} \pi^{2} t / 500} \sin \frac{n \pi x}{10}
$$

The initial condition is

$$
4 x=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{10}
$$

We recognize this as the relation for the sine series of the function $4 x$ defined on the interval $0<x<10$. Thus

$$
\begin{gathered}
b_{n}=\frac{2}{10} \int_{0}^{10} 4 x \sin \frac{n \pi x}{10} d x=\frac{4}{5}\left[-\frac{10}{n \pi} x \cos \frac{n \pi x}{10}+\left(\frac{10}{n \pi}\right)^{2} \sin \frac{n \pi x}{10}\right]_{0}^{10} \\
=\frac{4}{5}\left[-\frac{100}{n \pi} \cos n \pi\right]=-\frac{80}{\pi} \frac{1}{n} \cos n \pi=\frac{80}{\pi} \frac{(-1)^{n+1}}{n}
\end{gathered}
$$

Thus the solution is

$$
u(x, t)=\sum_{n=1}^{\infty} \frac{80}{\pi} \frac{(-1)^{n+1}}{n} e^{-n^{2} \pi^{2} t / 500} \sin \frac{n \pi x}{10}
$$

11. This is an insulated ends problem with $L=10$ and $k=1 / 5$, so we have

$$
u(x, t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} e^{-n^{2} \pi^{2} t / 500} \cos \frac{n \pi x}{10}
$$

The initial condition is

$$
4 x=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{10}
$$

We recognize this as the cosine series of the function $4 x$ defined on the interval $0<x<10$. Thus

$$
\begin{gathered}
a_{0}=\frac{2}{10} \int_{0}^{10} 4 x d x=\frac{1}{5}\left[2 x^{2}\right]_{0}^{10}=40 \\
a_{n}=\frac{2}{10} \int_{0}^{10} 4 x \cos \frac{n \pi x}{10} d x=\frac{4}{5}\left[\frac{10}{n \pi} x \sin \frac{n \pi x}{10}+\left(\frac{10}{n \pi}\right)^{2} \cos \frac{n \pi x}{10}\right]_{0}^{10} \\
=\frac{4}{5}\left[\frac{100}{n^{2} \pi^{2}}(\cos n \pi-1)\right]=\frac{80}{n^{2} \pi^{2}}\left((-1)^{n}-1\right)
\end{gathered}
$$

The quantity $(-1)^{n}-1$ is 0 for even n and -2 for odd n, thus

$$
a_{n}=-\frac{160}{n^{2} \pi^{2}} \text { if } n \text { is odd, } \quad a_{n}=0 \text { if } n \text { is even. }
$$

Using these values for a_{n}, the solution is

$$
u(x, t)=20-\frac{160}{\pi^{2}} \sum_{n \text { odd }} \frac{1}{n^{2}} e^{-n^{2} \pi^{2} t / 500} \cos \frac{n \pi x}{10}
$$

17. Consider a rod with initial temperature $u(x, 0)=f(x)$ and fixed endpoint temperatures $u(0, t)=A$ and $u(L, t)=B$.
(a) The steady state solution $u_{\mathrm{ss}}(x)$ does not depend on t, and it satisfies $\frac{\partial^{2} u_{\mathrm{ss}}}{\partial x^{2}}=0, u_{\mathrm{ss}}(0)=A$, and $u_{\mathrm{ss}}(L)=B$. Integrating $\frac{\partial^{2} u_{\mathrm{ss}}}{\partial x^{2}}=0$ twice with respect to x gives $u_{\mathrm{ss}}(x)=c x+d$. The endpoint conditions then become

$$
A=c(0)+d, \quad B=c L+d
$$

The solution of which is $d=A, c=(B-A) / L$. Thus

$$
u_{\mathrm{ss}}(x)=(B-A) \frac{x}{L}+A
$$

(b) The transient temperature is defined to be

$$
u_{\mathrm{tr}}(x, t)=u(x, t)-u_{\mathrm{ss}}(x)
$$

Given that u satisfies the equation

$$
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}
$$

and what we know about $u_{\mathrm{ss}}(x)$, we find

$$
\begin{gathered}
\frac{\partial u_{\mathrm{tr}}}{\partial t}=\frac{\partial u}{\partial t}-\frac{\partial u_{\mathrm{ss}}}{\partial t}=\frac{\partial u}{\partial t}-0=\frac{\partial u}{\partial t} \\
\frac{\partial^{2} u_{\mathrm{tr}}}{\partial x^{2}}=\frac{\partial^{2} u}{\partial x^{2}}-\frac{\partial^{2} u_{\mathrm{ss}}}{\partial x^{2}}=\frac{\partial^{2} u}{\partial x^{2}}-0=\frac{\partial^{2} u}{\partial x^{2}}
\end{gathered}
$$

We find that $u_{\text {tr }}$ also satisfies the equation

$$
\frac{\partial u_{\mathrm{tr}}}{\partial t}=k \frac{\partial^{2} u_{\mathrm{tr}}}{\partial x^{2}}
$$

On the other hand, since $u(0, t)=A$, and $u_{\mathrm{ss}}(0, t)=A$, we find

$$
u_{\mathrm{tr}}(0, t)=u(0, t)-u_{\mathrm{ss}}(0, t)=A-A=0
$$

Similarly, since $u(L, t)=B$ and $u_{\mathrm{sS}}(L, t)=B$, we have $u_{\mathrm{tr}}(L, t)=$ 0 . Finally, since $u(x, 0)=f(x)$, while $u_{\mathrm{ss}}(x)=(B-A)(x / L)+A$ for all values of t, we have

$$
u_{\mathrm{tr}}(x, 0)=u(x, 0)-u_{\mathrm{ss}}(x)=f(x)-u_{\mathrm{ss}}(x)=f(x)-[(B-A)(x / L)+A]
$$

Thus $u_{\mathrm{tr}}(x, t)$ is in fact a solution of the boundary value problem

$$
\frac{\partial u_{\mathrm{tr}}}{\partial t}=k \frac{\partial^{2} u_{\mathrm{tr}}}{\partial x^{2}}, \quad u_{\mathrm{tr}}(0, t)=u_{\mathrm{tr}}(L, t)=0, \quad u_{\mathrm{tr}}(x, 0)=f(x)-u_{\mathrm{ss}}(x)
$$

(c) We can interpret the previous part as saying that $u_{\mathrm{tr}}(x, t)$ is a solution of the zero endpoint temperature problem with initial temperature distribution $f(x)-u_{\mathrm{ss}}(x)$. Therefore, Theorem 1 from page 604 applies to $u_{\text {tr }}(x, t)$, telling us that

$$
u_{\mathrm{tr}}(x, t)=\sum_{n=1}^{\infty} c_{n} e^{-n^{2} \pi^{2} k t / L^{2}} \sin \frac{n \pi x}{L}
$$

where c_{n} are the coefficients of the sine series of the initial temperature distribution $f(x)-u_{\mathrm{ss}}(x)$, namely

$$
c_{n}=\frac{2}{L} \int_{0}^{L}\left[f(x)-u_{\mathrm{ss}}(x)\right] \sin \frac{n \pi x}{L} d x
$$

Since $u(x, t)=u_{\mathrm{tr}}(x, t)+u_{\mathrm{ss}}(x)$, we get finally

$$
u(x, t)=u_{\mathrm{ss}}(x)+\sum_{n=1}^{\infty} c_{n} e^{-n^{2} \pi^{2} k t / L^{2}} \sin \frac{n \pi x}{L}
$$

where c_{n} are given as above.
Note: Using the known form of $u_{\mathrm{SS}}(x)$, we can write this even more explicitly as
$u(x, t)=A+(B-A) \frac{x}{L}+\sum_{n=1}^{\infty} c_{n} e^{-n^{2} \pi^{2} k t / L^{2}} \sin \frac{n \pi x}{L}$
with coefficients c_{n} given by

$$
c_{n}=\frac{2}{L} \int_{0}^{L}[f(x)-(B-A)(x / L)-A] \sin \frac{n \pi x}{L} d x
$$

