
MATH 285 HOMEWORK 11 SOLUTIONS

Section 9.5

1. Since this is a heat equation problem with zero endpoint tempera-
tures, we konw from Theorem 1 on page 604, with L = π and k = 3,
that

u(x, t) =
∞∑
n=1

bne
−3n2t sinnx

For some coefficients bn. The initial condition u(x, 0) = 4 sin 2x
becomes

4 sin 2x =
∞∑
n=1

bn sinnx

This equation is satisfied if b2 = 4 and bn = 0 for all n 6= 4. Thus
the solution is

u(x, t) = 4e−12t sin 2x

3. This is a heat equation problem with zero endpoint temperatures,
so we know from Theorem 1, with L = 1 and k = 2, that

u(x, t) =

∞∑
n=1

bne
−2n2π2t sinnπx

The initial condition u(x, 0) = 5 sinπx− 1
5 sin 3πx becomes

5 sinπx− 1

5
sin 3πx =

∞∑
n=1

bn sinnπx

Thus we must take b1 = 5, b3 = −1/5, and all other bn = 0. The
solution thus contains only the n = 1 and n = 3 terms, and is

u(x, t) = 5e−2π
2t − 1

5
e−18π

2t sin 3πx

5. This is a heat equation problem with insulated ends, so we know
from Theorem 2 on page 607, with L = 3 and k = 2, that

u(x, t) =
a0
2

+
∞∑
n=1

ane
−2n2π2t

9 cos
nπx

3

The initial condition u(x, 0) = 4 cos 2πx
3 − 2 cos 4πx

3 becomes

4 cos
2πx

3
− 2 cos

4πx

3
=
a0
2

+

∞∑
n=1

an cos
nπx

3

1
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Thus we must take a0 = 0, a2 = 4, a4 = −2, and all other an = 0.
The solution only contains the n = 2 and n = 4 terms, and is

u(x, t) = 4e
−8π2t

9 cos
2πx

3
− 2e

−32π2t
9 cos

4πx

3

10. This is a zero endpoint temperature problem with L = 10 and k =
1/5, so we have

u(x, t) =
∞∑
n=1

bne
−n2π2t/500 sin

nπx

10

The initial condition is

4x =
∞∑
n=1

bn sin
nπx

10

We recognize this as the relation for the sine series of the function
4x defined on the interval 0 < x < 10. Thus

bn =
2

10

∫ 10

0
4x sin

nπx

10
dx =

4

5

[
− 10

nπ
x cos

nπx

10
+

(
10

nπ

)2

sin
nπx

10

]10
0

=
4

5

[
−100

nπ
cosnπ

]
= −80

π

1

n
cosnπ =

80

π

(−1)n+1

n

Thus the solution is

u(x, t) =
∞∑
n=1

80

π

(−1)n+1

n
e−n

2π2t/500 sin
nπx

10

11. This is an insulated ends problem with L = 10 and k = 1/5, so we
have

u(x, t) =
a0
2

+
∞∑
n=1

ane
−n2π2t/500 cos

nπx

10

The initial condition is

4x =
a0
2

+

∞∑
n=1

an cos
nπx

10

We recognize this as the cosine series of the function 4x defined on
the interval 0 < x < 10. Thus

a0 =
2

10

∫ 10

0
4x dx =

1

5
[2x2]100 = 40

an =
2

10

∫ 10

0
4x cos

nπx

10
dx =

4

5

[
10

nπ
x sin

nπx

10
+

(
10

nπ

)2

cos
nπx

10

]10
0

=
4

5

[
100

n2π2
(cosnπ − 1)

]
=

80

n2π2
((−1)n − 1)
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The quantity (−1)n − 1 is 0 for even n and −2 for odd n, thus

an = − 160

n2π2
if n is odd, an = 0 if n is even.

Using these values for an, the solution is

u(x, t) = 20− 160

π2

∑
n odd

1

n2
e−n

2π2t/500 cos
nπx

10

17. Consider a rod with initial temperature u(x, 0) = f(x) and fixed
endpoint temperatures u(0, t) = A and u(L, t) = B.
(a) The steady state solution uss(x) does not depend on t, and it

satisfies ∂2uss
∂x2

= 0, uss(0) = A, and uss(L) = B. Integrating
∂2uss
∂x2

= 0 twice with respect to x gives uss(x) = cx + d. The
endpoint conditions then become

A = c(0) + d, B = cL+ d

The solution of which is d = A, c = (B −A)/L. Thus

uss(x) = (B −A)
x

L
+A

(b) The transient temperature is defined to be

utr(x, t) = u(x, t)− uss(x).

Given that u satisfies the equation

∂u

∂t
= k

∂2u

∂x2
,

and what we know about uss(x), we find

∂utr
∂t

=
∂u

∂t
− ∂uss

∂t
=
∂u

∂t
− 0 =

∂u

∂t

∂2utr
∂x2

=
∂2u

∂x2
− ∂2uss

∂x2
=
∂2u

∂x2
− 0 =

∂2u

∂x2

We find that utr also satisfies the equation

∂utr
∂t

= k
∂2utr
∂x2

On the other hand, since u(0, t) = A, and uss(0, t) = A, we find

utr(0, t) = u(0, t)− uss(0, t) = A−A = 0.

Similarly, since u(L, t) = B and uss(L, t) = B, we have utr(L, t) =
0. Finally, since u(x, 0) = f(x), while uss(x) = (B−A)(x/L)+A
for all values of t, we have

utr(x, 0) = u(x, 0)− uss(x) = f(x)− uss(x) = f(x)− [(B −A)(x/L) +A]

Thus utr(x, t) is in fact a solution of the boundary value problem

∂utr
∂t

= k
∂2utr
∂x2

, utr(0, t) = utr(L, t) = 0, utr(x, 0) = f(x)− uss(x).
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(c) We can interpret the previous part as saying that utr(x, t) is a
solution of the zero endpoint temperature problem with initial
temperature distribution f(x) − uss(x). Therefore, Theorem 1
from page 604 applies to utr(x, t), telling us that

utr(x, t) =
∞∑
n=1

cne
−n2π2kt/L2

sin
nπx

L

where cn are the coefficients of the sine series of the initial tem-
perature distribution f(x)− uss(x), namely

cn =
2

L

∫ L

0
[f(x)− uss(x)] sin

nπx

L
dx

Since u(x, t) = utr(x, t) + uss(x), we get finally

u(x, t) = uss(x) +
∞∑
n=1

cne
−n2π2kt/L2

sin
nπx

L

where cn are given as above.
Note: Using the known form of uss(x), we can write this even
more explicitly as

u(x, t) = A+ (B −A)
x

L
+
∞∑
n=1

cne
−n2π2kt/L2

sin
nπx

L

with coefficients cn given by

cn =
2

L

∫ L

0
[f(x)− (B −A)(x/L)−A] sin

nπx

L
dx


