
MATH 285 HOMEWORK 10 SOLUTIONS

Section 9.4

4. Taking the result of Example 1 from Section 9.3 with L = 2, and
then multiplying by 2, we find that the Fourier series of the even
periodic function of period 4 such that F (t) = 2t for 0 < t < 2 is
given by
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To solve x′′+4x = F (t), we use a trial solution that is a cosine series:
x(t) = a0
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Comparing coefficients, we find 2a0 = 2 and an = 0 for even n, while
for odd n, (

−n
2π2

4
+ 4

)
an = − 16

π2n2
.

Thus a0 = 1, and for odd n,

an =
−16/π2n2

4− π2n2/4
= − 64

π2n2(16− π2n2)
Thus the Fourier series solution for the steady periodic solution
xsp(t) is

xsp(t) =
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2
− 64

∑
n odd

cosnπt/2

π2n2(16− π2n2)

7. Since m = 1 and k = 9, the natural frequency is ω0 =
√

9 = 3. The
Fourier series for F (t) (which is a squarewave) is
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)
Since the Fourier series contains a sin 3t term, resonance will occur
in this system.

8. Since m = 2 and k = 10, the natural frequency is ω0 =
√

5. Now
since F (t) is an odd periodic function of period 2, its Fourier series
is a sine series,

F (t) =

∞∑
n=1

bn sinnπt
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In this problem, we can see that resonance does not occur, even
without knowing the coefficients bn. In order for resonance to occur,
there would need to be an integer n so that nπ = ω0 =

√
5. That

would mean that
√

5/π would have to be an integer. But
√

5/π ≈
0.711763 is not an integer, therefore resonance does not occur.

Section 3.8

[Note: In the following problems we never consider the case λ < 0 be-
cause the statement of the problem asserts that all of the eigenvalues are
nonnegative, and we take this as a given. Strictly speaking, when one is
considering an eigenvalue problem from first principles, one needs to also
check whether λ < 0 can be an eigenvalue. –JP]

1. The case λ = 0: y′′ = 0 implies y(x) = A + Bx. The endpoint
condition y′(0) = 0 implies B = 0, so y(x) = A. Then y(1) = 0
implies A = 0 as well. Thus the only solution is y(x) = 0, and λ = 0
is not an eigenvalue.

The case λ > 0: For convenience let α =
√
λ, so λ = α2. Then

the equation y′′ +α2y = 0 implies y(x) = A cosαx+B sinαx. Thus
y′(x) = −Aα sinαx + Bα cosαx. The conditions y′(0) = 0 and
y(1) = 0 then imply B = 0, and A cosα+B sinα = 0. This simplifies
to B = 0 and A cosα = 0. Thus A is forced to be zero unless
cosα = 0. This happens precisely when α is an odd multiple of π/2,
α = (2n − 1)π/2, n = 1, 2, 3, . . . , and in this case y(x) = cosαx
is a nonzero solution to the endpoint problem. Thus, the positive
eigenvalues are λ = α2 = (2n − 1)2π2/4, n = 1, 2, 3, . . . , and the
associated eigenfunctions are yn(x) = cos[(2n− 1)πx/2].

2. The case λ = 0: y′′ = 0 implies y(x) = A + Bx. The endpoint
condition y′(0) = 0 implies B = 0, so y(x) = A. Then other endpoint
condition y′(π) = 0 is then also satisified. So λ = 0 is an eigenvalue,
and the associated eigenfunction is the constant function y0(x) = 1.

The case λ > 0: Write λ = α2. The equation y′′ + α2y = 0
implies y(x) = A cosαx+B sinαx. The condition y′(0) = 0 implies
αB = 0, so B = 0, and y(x) = A cosαx. The other endpoint
condition y′(π) = 0 implies that −αA sinαπ = 0. This equation
forces A = 0 be zero unless sinαπ = 0. This happens when απ = nπ
for some integer n, that is, when α = n is an integer, n = 1, 2, 3, . . . .
Thus the positive eigenvalues are λ = α2 = n2 for n = 1, 2, 3, . . . ,
and the associated eigenfunctions are yn(x) = cosnx.

4. The case λ = 0: y′′ = 0 implies y(x) = A+Bx. The endpoint condi-
tion y′(−π) = 0 implies B = 0, and then the condition y′(π) = 0 is
also satisfied. So λ = 0 is an eigenvalue with associated eigenfunction
y0(x) = 1.

The case λ > 0: Write λ = α2. The general solution is y(x) =
A cosαx+B sinαx, with derivative y′(x) = −αA sinαx+αB cosαx.
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Then condition y′(−π) = 0 implies

A sinαπ +B cosαπ = 0

The condition y′(π) = 0 implies

−A sinαπ +B cosαπ = 0

Taking the sum and difference of these two equations we get the
equivalent set of conditions

A sinαπ = 0 and B cosαπ = 0

If A 6= 0, then sinαπ = 0, so α = n is an integer, and then cosnπ 6=
0, so B = 0. If B 6= 0, then cosαπ = 0, so απ is an odd multiple
of π/2 which is to say that α is an odd multiple of 1/2, and the
sinαπ 6= 0, so A = 0.

There are thus two families of α-values, the integers and the odd
multiples of 1/2. This is the same as all integer multiples of 1/2.
Thus the positive eigenvalues are λ = α2 = (n/2)2 for n = 1, 2, 3, . . . .
The associated eigenfunction is yn(x) = cos(nx/2) if n is even and
yn(x) = sin(nx/2) if n is odd.

5. The case λ = 0: y′′ = 0 implies y(x) = A + Bx. The condition
y′(2) = 0 implies B = 0, so y(x) = A, and then the condition
y(−2) = 0 implies A = 0 as well. So λ = 0 is not an eigenvalue.

The case λ > 0: Write λ = α2. The general solution is y(x) =
A cosαx + B sinαx. The condition y(−2) = 0 implies A cos 2α −
B sin 2α = 0. The condition y′(2) = 0 implies−αA sin 2α+αB cos 2α =
0. This yields the system

A cos 2α = B sin 2α and A sin 2α = B cos 2α

Note that if A = 0, then B = 0 as well, and vice versa. So if
A 6= 0 then B 6= 0, and vice versa. Now, taking the ratio of these
two equations, we find 1/ tan 2α = tan 2α, or (tan 2α)2 = 1. Thus
there are two possibilies tan 2α = 1 or tan 2α = −1. The solutions
of tan 2α = 1 occur when 2α = π/4 + nπ for some integer n =
0, 1, 2, . . . , while the solutions of tan 2α = −1 occur when 2α =
3π/4 + nπ for n = 0, 1, 2, . . . . Combining the cases, we see that 2α
can be any odd multiple of π/4

2α = (2n− 1)
π

4
n = 1, 2, 3, . . .

Thus α = (2n− 1)π/8, and λ = (2n− 1)2π2/64, for n = 1, 2, 3, . . . .
For odd n, the associated eigenfunction comes from the case tan 2α =

1, which means A = B. Thus it is yn(x) = cosαnx+ sinαnx, where
αn = (2n− 1)π/8, and n is odd.

For even n, the associated eigenfunction comes from the case
tan 2α = −1, which means A = −B. Thus it is yn(x) = cosαnx −
sinαnx, where αn = (2n− 1)π/8, and n is even.
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6. The case λ = 0: y′′ = 0 implies y(x) = A + Bx, and the condition
y′(0) = 0 implies B = 0. while the conditon y(1) + y′(1) = 0 implies
A+B +B = 0. Thus A = B = 0, and λ = 0 is not an eigenvalue.

The case λ > 0: Write λ = α2. The general solution is y(x) =
A cosαx + B sinαx. Then y′(x) = −αA sinαx + αB cosαx. The
condition y′(0) = 0 implies B = 0, so y(x) = A cosαx, y′(x) =
−αA sinαx. The condition y(1)+y′(1) = 0 the implies that A cosα−
αA sinα = 0. This forces A = 0 unless α satisfies the condition
cosα− α sinα = 0. This equation can be rewritten as tanα = 1/α.
As the graph in the textbook illustrates, this equation does have in-
finitely many positive solutions for α. Since they are difficult to cal-
culate we just denote them by αn, n = 1, 2, 3, . . . . The corresponding
positive eigenvalues λn = α2

n, and the corresponding eigenfunctions
are yn(x) = cosαnx.

[Note: Entering the command Solve[Tan[z] == 1/z, z] into
Mathematica yields the response “This system cannot be solved with
the methods available to Solve.” So you shouldn’t feel bad that you
can’t solve this equation. –JP]


