MATH 285 HOMEWORK 10 SOLUTIONS

Section 9.4

4. Taking the result of Example 1 from Section 9.3 with $L=2$, and then multiplying by 2 , we find that the Fourier series of the even periodic function of period 4 such that $F(t)=2 t$ for $0<t<2$ is given by

$$
F(t)=2-\frac{16}{\pi^{2}} \sum_{n \text { odd }} \frac{1}{n^{2}} \cos \frac{n \pi t}{2}
$$

To solve $x^{\prime \prime}+4 x=F(t)$, we use a trial solution that is a cosine series: $x(t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi t}{2}$. This leads to
$-\sum_{n=1}^{\infty} \frac{n^{2} \pi^{2}}{4} a_{n} \cos \frac{n \pi t}{2}+2 a_{0}+4 \sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi t}{2}=2-\frac{16}{\pi^{2}} \sum_{n \text { odd }} \frac{1}{n^{2}} \cos \frac{n \pi t}{2}$
Comparing coefficients, we find $2 a_{0}=2$ and $a_{n}=0$ for even n, while for odd n,

$$
\left(-\frac{n^{2} \pi^{2}}{4}+4\right) a_{n}=-\frac{16}{\pi^{2} n^{2}}
$$

Thus $a_{0}=1$, and for odd n,

$$
a_{n}=\frac{-16 / \pi^{2} n^{2}}{4-\pi^{2} n^{2} / 4}=-\frac{64}{\pi^{2} n^{2}\left(16-\pi^{2} n^{2}\right)}
$$

Thus the Fourier series solution for the steady periodic solution $x_{\mathrm{sp}}(t)$ is

$$
x_{\mathrm{sp}}(t)=\frac{1}{2}-64 \sum_{n \text { odd }} \frac{\cos n \pi t / 2}{\pi^{2} n^{2}\left(16-\pi^{2} n^{2}\right)}
$$

7. Since $m=1$ and $k=9$, the natural frequency is $\omega_{0}=\sqrt{9}=3$. The Fourier series for $F(t)$ (which is a squarewave) is

$$
F(t)=\frac{4}{\pi} \sum_{n \text { odd }} \frac{1}{n} \sin n t=\frac{4}{\pi}\left(\sin t+\frac{1}{3} \sin 3 t+\cdots\right)
$$

Since the Fourier series contains a $\sin 3 t$ term, resonance will occur in this system.
8. Since $m=2$ and $k=10$, the natural frequency is $\omega_{0}=\sqrt{5}$. Now since $F(t)$ is an odd periodic function of period 2 , its Fourier series is a sine series,

$$
F(t)=\sum_{\substack{n=1 \\ 1}}^{\infty} b_{n} \sin n \pi t
$$

In this problem, we can see that resonance does not occur, even without knowing the coefficients b_{n}. In order for resonance to occur, there would need to be an integer n so that $n \pi=\omega_{0}=\sqrt{5}$. That would mean that $\sqrt{5} / \pi$ would have to be an integer. But $\sqrt{5} / \pi \approx$ 0.711763 is not an integer, therefore resonance does not occur.

SECTION 3.8

[Note: In the following problems we never consider the case $\lambda<0$ because the statement of the problem asserts that all of the eigenvalues are nonnegative, and we take this as a given. Strictly speaking, when one is considering an eigenvalue problem from first principles, one needs to also check whether $\lambda<0$ can be an eigenvalue. -JP]

1. The case $\lambda=0: y^{\prime \prime}=0$ implies $y(x)=A+B x$. The endpoint condition $y^{\prime}(0)=0$ implies $B=0$, so $y(x)=A$. Then $y(1)=0$ implies $A=0$ as well. Thus the only solution is $y(x)=0$, and $\lambda=0$ is not an eigenvalue.

The case $\lambda>0$: For convenience let $\alpha=\sqrt{\lambda}$, so $\lambda=\alpha^{2}$. Then the equation $y^{\prime \prime}+\alpha^{2} y=0$ implies $y(x)=A \cos \alpha x+B \sin \alpha x$. Thus $y^{\prime}(x)=-A \alpha \sin \alpha x+B \alpha \cos \alpha x$. The conditions $y^{\prime}(0)=0$ and $y(1)=0$ then imply $B=0$, and $A \cos \alpha+B \sin \alpha=0$. This simplifies to $B=0$ and $A \cos \alpha=0$. Thus A is forced to be zero unless $\cos \alpha=0$. This happens precisely when α is an odd multiple of $\pi / 2$, $\alpha=(2 n-1) \pi / 2, n=1,2,3, \ldots$, and in this case $y(x)=\cos \alpha x$ is a nonzero solution to the endpoint problem. Thus, the positive eigenvalues are $\lambda=\alpha^{2}=(2 n-1)^{2} \pi^{2} / 4, n=1,2,3, \ldots$, and the associated eigenfunctions are $y_{n}(x)=\cos [(2 n-1) \pi x / 2]$.
2. The case $\lambda=0: y^{\prime \prime}=0$ implies $y(x)=A+B x$. The endpoint condition $y^{\prime}(0)=0$ implies $B=0$, so $y(x)=A$. Then other endpoint condition $y^{\prime}(\pi)=0$ is then also satisified. So $\lambda=0$ is an eigenvalue, and the associated eigenfunction is the constant function $y_{0}(x)=1$.

The case $\lambda>0$: Write $\lambda=\alpha^{2}$. The equation $y^{\prime \prime}+\alpha^{2} y=0$ implies $y(x)=A \cos \alpha x+B \sin \alpha x$. The condition $y^{\prime}(0)=0$ implies $\alpha B=0$, so $B=0$, and $y(x)=A \cos \alpha x$. The other endpoint condition $y^{\prime}(\pi)=0$ implies that $-\alpha A \sin \alpha \pi=0$. This equation forces $A=0$ be zero unless $\sin \alpha \pi=0$. This happens when $\alpha \pi=n \pi$ for some integer n, that is, when $\alpha=n$ is an integer, $n=1,2,3, \ldots$. Thus the positive eigenvalues are $\lambda=\alpha^{2}=n^{2}$ for $n=1,2,3, \ldots$, and the associated eigenfunctions are $y_{n}(x)=\cos n x$.
4. The case $\lambda=0: y^{\prime \prime}=0$ implies $y(x)=A+B x$. The endpoint condition $y^{\prime}(-\pi)=0$ implies $B=0$, and then the condition $y^{\prime}(\pi)=0$ is also satisfied. So $\lambda=0$ is an eigenvalue with associated eigenfunction $y_{0}(x)=1$.

The case $\lambda>0$: Write $\lambda=\alpha^{2}$. The general solution is $y(x)=$ $A \cos \alpha x+B \sin \alpha x$, with derivative $y^{\prime}(x)=-\alpha A \sin \alpha x+\alpha B \cos \alpha x$.

Then condition $y^{\prime}(-\pi)=0$ implies

$$
A \sin \alpha \pi+B \cos \alpha \pi=0
$$

The condition $y^{\prime}(\pi)=0$ implies

$$
-A \sin \alpha \pi+B \cos \alpha \pi=0
$$

Taking the sum and difference of these two equations we get the equivalent set of conditions

$$
A \sin \alpha \pi=0 \text { and } B \cos \alpha \pi=0
$$

If $A \neq 0$, then $\sin \alpha \pi=0$, so $\alpha=n$ is an integer, and then $\cos n \pi \neq$ 0 , so $B=0$. If $B \neq 0$, then $\cos \alpha \pi=0$, so $\alpha \pi$ is an odd multiple of $\pi / 2$ which is to say that α is an odd multiple of $1 / 2$, and the $\sin \alpha \pi \neq 0$, so $A=0$.

There are thus two families of α-values, the integers and the odd multiples of $1 / 2$. This is the same as all integer multiples of $1 / 2$. Thus the positive eigenvalues are $\lambda=\alpha^{2}=(n / 2)^{2}$ for $n=1,2,3, \ldots$ The associated eigenfunction is $y_{n}(x)=\cos (n x / 2)$ if n is even and $y_{n}(x)=\sin (n x / 2)$ if n is odd.
5. The case $\lambda=0: y^{\prime \prime}=0$ implies $y(x)=A+B x$. The condition $y^{\prime}(2)=0$ implies $B=0$, so $y(x)=A$, and then the condition $y(-2)=0$ implies $A=0$ as well. So $\lambda=0$ is not an eigenvalue.

The case $\lambda>0$: Write $\lambda=\alpha^{2}$. The general solution is $y(x)=$ $A \cos \alpha x+B \sin \alpha x$. The condition $y(-2)=0$ implies $A \cos 2 \alpha-$ $B \sin 2 \alpha=0$. The condition $y^{\prime}(2)=0$ implies $-\alpha A \sin 2 \alpha+\alpha B \cos 2 \alpha=$ 0 . This yields the system

$$
A \cos 2 \alpha=B \sin 2 \alpha \text { and } A \sin 2 \alpha=B \cos 2 \alpha
$$

Note that if $A=0$, then $B=0$ as well, and vice versa. So if $A \neq 0$ then $B \neq 0$, and vice versa. Now, taking the ratio of these two equations, we find $1 / \tan 2 \alpha=\tan 2 \alpha$, or $(\tan 2 \alpha)^{2}=1$. Thus there are two possibilies $\tan 2 \alpha=1$ or $\tan 2 \alpha=-1$. The solutions of $\tan 2 \alpha=1$ occur when $2 \alpha=\pi / 4+n \pi$ for some integer $n=$ $0,1,2, \ldots$, while the solutions of $\tan 2 \alpha=-1$ occur when $2 \alpha=$ $3 \pi / 4+n \pi$ for $n=0,1,2, \ldots$ Combining the cases, we see that 2α can be any odd multiple of $\pi / 4$

$$
2 \alpha=(2 n-1) \frac{\pi}{4} \quad n=1,2,3, \ldots
$$

Thus $\alpha=(2 n-1) \pi / 8$, and $\lambda=(2 n-1)^{2} \pi^{2} / 64$, for $n=1,2,3, \ldots$.
For odd n, the associated eigenfunction comes from the case $\tan 2 \alpha=$ 1 , which means $A=B$. Thus it is $y_{n}(x)=\cos \alpha_{n} x+\sin \alpha_{n} x$, where $\alpha_{n}=(2 n-1) \pi / 8$, and n is odd.

For even n, the associated eigenfunction comes from the case $\tan 2 \alpha=-1$, which means $A=-B$. Thus it is $y_{n}(x)=\cos \alpha_{n} x-$ $\sin \alpha_{n} x$, where $\alpha_{n}=(2 n-1) \pi / 8$, and n is even.
6. The case $\lambda=0: y^{\prime \prime}=0$ implies $y(x)=A+B x$, and the condition $y^{\prime}(0)=0$ implies $B=0$. while the conditon $y(1)+y^{\prime}(1)=0$ implies $A+B+B=0$. Thus $A=B=0$, and $\lambda=0$ is not an eigenvalue.

The case $\lambda>0$: Write $\lambda=\alpha^{2}$. The general solution is $y(x)=$ $A \cos \alpha x+B \sin \alpha x$. Then $y^{\prime}(x)=-\alpha A \sin \alpha x+\alpha B \cos \alpha x$. The condition $y^{\prime}(0)=0$ implies $B=0$, so $y(x)=A \cos \alpha x, y^{\prime}(x)=$ $-\alpha A \sin \alpha x$. The condition $y(1)+y^{\prime}(1)=0$ the implies that $A \cos \alpha-$ $\alpha A \sin \alpha=0$. This forces $A=0$ unless α satisfies the condition $\cos \alpha-\alpha \sin \alpha=0$. This equation can be rewritten as $\tan \alpha=1 / \alpha$. As the graph in the textbook illustrates, this equation does have infinitely many positive solutions for α. Since they are difficult to calculate we just denote them by $\alpha_{n}, n=1,2,3, \ldots$. The corresponding positive eigenvalues $\lambda_{n}=\alpha_{n}^{2}$, and the corresponding eigenfunctions are $y_{n}(x)=\cos \alpha_{n} x$.
[Note: Entering the command Solve[Tan[z] == $1 / z, z]$ into Mathematica yields the response "This system cannot be solved with the methods available to Solve." So you shouldn't feel bad that you can't solve this equation. -JP]

