MATH 285 HOMEWORK 10 SOLUTIONS

Section 9.4

4. Taking the result of Example 1 from Section 9.3 with L = 2, and then multiplying by 2, we find that the Fourier series of the even periodic function of period 4 such that F(t) = 2t for 0 < t < 2 is given by

$$F(t) = 2 - \frac{16}{\pi^2} \sum_{n \text{ odd}} \frac{1}{n^2} \cos \frac{n\pi t}{2}$$

To solve x'' + 4x = F(t), we use a trial solution that is a cosine series: $x(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi t}{2}$. This leads to

$$-\sum_{n=1}^{\infty} \frac{n^2 \pi^2}{4} a_n \cos \frac{n \pi t}{2} + 2a_0 + 4\sum_{n=1}^{\infty} a_n \cos \frac{n \pi t}{2} = 2 - \frac{16}{\pi^2} \sum_{n \text{ odd}} \frac{1}{n^2} \cos \frac{n \pi t}{2}$$

Comparing coefficients, we find $2a_0 = 2$ and $a_n = 0$ for even n, while for odd n,

$$\left(-\frac{n^2\pi^2}{4}+4\right)a_n = -\frac{16}{\pi^2 n^2}.$$

Thus $a_0 = 1$, and for odd n,

$$a_n = \frac{-16/\pi^2 n^2}{4 - \pi^2 n^2/4} = -\frac{64}{\pi^2 n^2 (16 - \pi^2 n^2)}$$

Thus the Fourier series solution for the steady periodic solution $x_{sp}(t)$ is

$$x_{\rm sp}(t) = \frac{1}{2} - 64 \sum_{n \text{ odd}} \frac{\cos n\pi t/2}{\pi^2 n^2 (16 - \pi^2 n^2)}$$

7. Since m = 1 and k = 9, the natural frequency is $\omega_0 = \sqrt{9} = 3$. The Fourier series for F(t) (which is a squarewave) is

$$F(t) = \frac{4}{\pi} \sum_{n \text{ odd}} \frac{1}{n} \sin nt = \frac{4}{\pi} \left(\sin t + \frac{1}{3} \sin 3t + \cdots \right)$$

Since the Fourier series contains a $\sin 3t$ term, resonance will occur in this system.

8. Since m = 2 and k = 10, the natural frequency is $\omega_0 = \sqrt{5}$. Now since F(t) is an odd periodic function of period 2, its Fourier series is a sine series,

$$F(t) = \sum_{\substack{n=1\\1}}^{\infty} b_n \sin n\pi t$$

In this problem, we can see that resonance does not occur, even without knowing the coefficients b_n . In order for resonance to occur, there would need to be an integer n so that $n\pi = \omega_0 = \sqrt{5}$. That would mean that $\sqrt{5}/\pi$ would have to be an integer. But $\sqrt{5}/\pi \approx$ 0.711763 is not an integer, therefore resonance does not occur.

Section 3.8

[*Note:* In the following problems we never consider the case $\lambda < 0$ because the statement of the problem asserts that all of the eigenvalues are nonnegative, and we take this as a given. Strictly speaking, when one is considering an eigenvalue problem from first principles, one needs to also check whether $\lambda < 0$ can be an eigenvalue. -JP]

1. The case $\lambda = 0$: y'' = 0 implies y(x) = A + Bx. The endpoint condition y'(0) = 0 implies B = 0, so y(x) = A. Then y(1) = 0 implies A = 0 as well. Thus the only solution is y(x) = 0, and $\lambda = 0$ is not an eigenvalue.

The case $\lambda > 0$: For convenience let $\alpha = \sqrt{\lambda}$, so $\lambda = \alpha^2$. Then the equation $y'' + \alpha^2 y = 0$ implies $y(x) = A \cos \alpha x + B \sin \alpha x$. Thus $y'(x) = -A\alpha \sin \alpha x + B\alpha \cos \alpha x$. The conditions y'(0) = 0 and y(1) = 0 then imply B = 0, and $A \cos \alpha + B \sin \alpha = 0$. This simplifies to B = 0 and $A \cos \alpha = 0$. Thus A is forced to be zero unless $\cos \alpha = 0$. This happens precisely when α is an odd multiple of $\pi/2$, $\alpha = (2n - 1)\pi/2$, $n = 1, 2, 3, \ldots$, and in this case $y(x) = \cos \alpha x$ is a nonzero solution to the endpoint problem. Thus, the positive eigenvalues are $\lambda = \alpha^2 = (2n - 1)^2 \pi^2/4$, $n = 1, 2, 3, \ldots$, and the associated eigenfunctions are $y_n(x) = \cos[(2n - 1)\pi x/2]$.

2. The case $\lambda = 0$: y'' = 0 implies y(x) = A + Bx. The endpoint condition y'(0) = 0 implies B = 0, so y(x) = A. Then other endpoint condition $y'(\pi) = 0$ is then also satisified. So $\lambda = 0$ is an eigenvalue, and the associated eigenfunction is the constant function $y_0(x) = 1$.

and the associated eigenfunction is the constant function $y_0(x) = 1$. The case $\lambda > 0$: Write $\lambda = \alpha^2$. The equation $y'' + \alpha^2 y = 0$ implies $y(x) = A \cos \alpha x + B \sin \alpha x$. The condition y'(0) = 0 implies $\alpha B = 0$, so B = 0, and $y(x) = A \cos \alpha x$. The other endpoint condition $y'(\pi) = 0$ implies that $-\alpha A \sin \alpha \pi = 0$. This equation forces A = 0 be zero unless $\sin \alpha \pi = 0$. This happens when $\alpha \pi = n\pi$ for some integer n, that is, when $\alpha = n$ is an integer, $n = 1, 2, 3, \ldots$. Thus the positive eigenvalues are $\lambda = \alpha^2 = n^2$ for $n = 1, 2, 3, \ldots$, and the associated eigenfunctions are $y_n(x) = \cos nx$.

4. The case $\lambda = 0$: y'' = 0 implies y(x) = A + Bx. The endpoint condition $y'(-\pi) = 0$ implies B = 0, and then the condition $y'(\pi) = 0$ is also satisfied. So $\lambda = 0$ is an eigenvalue with associated eigenfunction $y_0(x) = 1$.

The case $\lambda > 0$: Write $\lambda = \alpha^2$. The general solution is $y(x) = A \cos \alpha x + B \sin \alpha x$, with derivative $y'(x) = -\alpha A \sin \alpha x + \alpha B \cos \alpha x$.

Then condition $y'(-\pi) = 0$ implies

$$A\sin\alpha\pi + B\cos\alpha\pi = 0$$

The condition $y'(\pi) = 0$ implies

$$-A\sin\alpha\pi + B\cos\alpha\pi = 0$$

Taking the sum and difference of these two equations we get the equivalent set of conditions

 $A\sin\alpha\pi = 0$ and $B\cos\alpha\pi = 0$

If $A \neq 0$, then $\sin \alpha \pi = 0$, so $\alpha = n$ is an integer, and then $\cos n\pi \neq 0$, so B = 0. If $B \neq 0$, then $\cos \alpha \pi = 0$, so $\alpha \pi$ is an odd multiple of $\pi/2$ which is to say that α is an odd multiple of 1/2, and the $\sin \alpha \pi \neq 0$, so A = 0.

There are thus two families of α -values, the integers and the odd multiples of 1/2. This is the same as all integer multiples of 1/2. Thus the positive eigenvalues are $\lambda = \alpha^2 = (n/2)^2$ for $n = 1, 2, 3, \ldots$. The associated eigenfunction is $y_n(x) = \cos(nx/2)$ if n is even and $y_n(x) = \sin(nx/2)$ if n is odd.

5. The case $\lambda = 0$: y'' = 0 implies y(x) = A + Bx. The condition y'(2) = 0 implies B = 0, so y(x) = A, and then the condition y(-2) = 0 implies A = 0 as well. So $\lambda = 0$ is not an eigenvalue.

The case $\lambda > 0$: Write $\lambda = \alpha^2$. The general solution is $y(x) = A \cos \alpha x + B \sin \alpha x$. The condition y(-2) = 0 implies $A \cos 2\alpha - B \sin 2\alpha = 0$. The condition y'(2) = 0 implies $-\alpha A \sin 2\alpha + \alpha B \cos 2\alpha = 0$. This yields the system

 $A\cos 2\alpha = B\sin 2\alpha$ and $A\sin 2\alpha = B\cos 2\alpha$

Note that if A = 0, then B = 0 as well, and vice versa. So if $A \neq 0$ then $B \neq 0$, and vice versa. Now, taking the ratio of these two equations, we find $1/\tan 2\alpha = \tan 2\alpha$, or $(\tan 2\alpha)^2 = 1$. Thus there are two possibilies $\tan 2\alpha = 1$ or $\tan 2\alpha = -1$. The solutions of $\tan 2\alpha = 1$ occur when $2\alpha = \pi/4 + n\pi$ for some integer $n = 0, 1, 2, \ldots$, while the solutions of $\tan 2\alpha = -1$ occur when $2\alpha = 3\pi/4 + n\pi$ for $n = 0, 1, 2, \ldots$ Combining the cases, we see that 2α can be any odd multiple of $\pi/4$

$$2\alpha = (2n-1)\frac{\pi}{4}$$
 $n = 1, 2, 3, \dots$

Thus $\alpha = (2n-1)\pi/8$, and $\lambda = (2n-1)^2\pi^2/64$, for n = 1, 2, 3, ...

For odd *n*, the associated eigenfunction comes from the case $\tan 2\alpha = 1$, which means A = B. Thus it is $y_n(x) = \cos \alpha_n x + \sin \alpha_n x$, where $\alpha_n = (2n-1)\pi/8$, and *n* is odd.

For even *n*, the associated eigenfunction comes from the case $\tan 2\alpha = -1$, which means A = -B. Thus it is $y_n(x) = \cos \alpha_n x - \sin \alpha_n x$, where $\alpha_n = (2n-1)\pi/8$, and *n* is even.

6. The case $\lambda = 0$: y'' = 0 implies y(x) = A + Bx, and the condition y'(0) = 0 implies B = 0. while the condition y(1) + y'(1) = 0 implies A + B + B = 0. Thus A = B = 0, and $\lambda = 0$ is not an eigenvalue.

The case $\lambda > 0$: Write $\lambda = \alpha^2$. The general solution is $y(x) = A \cos \alpha x + B \sin \alpha x$. Then $y'(x) = -\alpha A \sin \alpha x + \alpha B \cos \alpha x$. The condition y'(0) = 0 implies B = 0, so $y(x) = A \cos \alpha x$, $y'(x) = -\alpha A \sin \alpha x$. The condition y(1)+y'(1) = 0 the implies that $A \cos \alpha - \alpha A \sin \alpha = 0$. This forces A = 0 unless α satisfies the condition $\cos \alpha - \alpha \sin \alpha = 0$. This equation can be rewritten as $\tan \alpha = 1/\alpha$. As the graph in the textbook illustrates, this equation does have infinitely many positive solutions for α . Since they are difficult to calculate we just denote them by α_n , $n = 1, 2, 3, \ldots$. The corresponding positive eigenvalues $\lambda_n = \alpha_n^2$, and the corresponding eigenfunctions are $y_n(x) = \cos \alpha_n x$.

[*Note*: Entering the command Solve[Tan[z] == 1/z, z] into Mathematica yields the response "This system cannot be solved with the methods available to Solve." So you shouldn't feel bad that you can't solve this equation. -JP]

4