## MATH 285 HOMEWORK 1 SOLUTIONS

## Section 1.1

3. If $y_{1}=\cos 2 x$ and $y_{2}=\sin 2 x$, then $y_{1}^{\prime}=-2 \sin 2 x$ and $y_{2}^{\prime}=2 \cos 2 x$. Then $y_{1}^{\prime \prime}=-4 \cos 2 x=-4 y_{1}$ and $y_{2}^{\prime \prime}=-4 \sin 2 x=-4 y_{2}$. Thus $y_{1}^{\prime \prime}+4 y_{1}=0$ and $y_{2}^{\prime \prime}+4 y_{2}=0$.
4. If $y_{1}=e^{x} \cos x$ and $y_{2}=e^{x} \sin x$, then the first derivatives are $y_{1}^{\prime}=e^{x} \cos x-e^{x} \sin x$ and $y_{2}^{\prime}=e^{x} \sin x+e^{x} \cos x$. The second derivatives are

$$
\begin{gathered}
y_{1}^{\prime \prime}=e^{x} \cos x-e^{x} \sin x-e^{x} \sin x-e^{x} \cos x=-2 e^{x} \sin x \\
y_{2}^{\prime \prime}=e^{x} \sin x+e^{x} \cos x+e^{x} \cos x-e^{x} \sin x=2 e^{x} \cos x
\end{gathered}
$$

Thus

$$
\begin{gathered}
y_{1}^{\prime \prime}-2 y_{1}^{\prime}+2 y_{1}=-2 e^{x} \sin x-2\left(e^{x} \cos x-e^{x} \sin x\right)+2 e^{x} \cos x=0 \\
y_{2}^{\prime \prime}-2 y_{2}^{\prime}+2 y_{2}=2 e^{x} \cos x-2\left(e^{x} \sin x+e^{x} \cos x\right)+2 e^{x} \sin x=0
\end{gathered}
$$

19. If $y(x)=C e^{x}-1$, then $y^{\prime}=C e^{x}=y+1$. If $y(x)=C e^{x}-1$ and $y(0)=5$, we have $5=C e^{0}-1=C-1$, so $C=6$.
20. $\frac{d N}{d t}=k(P-N)$
21. (a) If $x(t)=1 /(C-k t)$, then $\frac{d x}{d t}=(-k)\left(-1 /(C-k t)^{2}\right)=k /(C-$ $k t)^{2}=k x^{2}$. (b) If $x(t)=0$, then $\frac{d x}{d t}=0$, so indeed $\frac{d x}{d t}=k x^{2}$. So $x(t)=0$ solves the initial value problem $x(0)=0$.

## Section 1.2

17. If $a(t)=(t+1)^{-3}$, then $v(t)=\int(t+1)^{-3} d t=-(1 / 2)(t+1)^{-2}+C$. In order to have $v(0)=0$, we take $C=1 / 2$. Then

$$
x(t)=\int\left[-(1 / 2)(t+1)^{-2}+(1 / 2)\right] d t=(1 / 2)(t+1)^{-1}+(1 / 2) t+C
$$

In order to have $x(0)=0$, we take $C=-1 / 2$. So

$$
x(t)=\frac{1}{2}\left[(t+1)^{-1}+t-1\right]
$$

20. The graph of $v(t)$ shows that

$$
v(t)= \begin{cases}t & \text { if } 0 \leq t \leq 5 \\ 5 & \text { if } 5 \leq t \leq 10\end{cases}
$$

This means that

$$
x(t)= \begin{cases}t^{2} / 2+C_{1} & \text { if } 0 \leq t \leq 5 \\ 5 t+C_{2} & \text { if } 5 \leq t \leq 10\end{cases}
$$

In order to have $x(0)=0$, we must have $C_{1}=0$. In order for $x(t)$ to be continuous, $x(t)=t^{2} / 2$ and $x(t)=5 t+C_{2}$ must agree when $t=5$. This implies that $C_{2}=-25 / 2$.
27. In units of meters and seconds, $a=-9.8$, so $v=-9.8 t-10$ and $y=-4.9 t^{2}-10 t+y_{0}$, where $y_{0}$ is the height of the building. When the ball hits the ground, $y=0$ and $v=-60$. Solving $-60=-9.8 t-10$, we find that $t \approx 5.10$ is the time it takes to hit the ground. Using the equation for position,

$$
0=-4.9(5.10)^{2}-10(5.10)+y_{0}
$$

So $y_{0} \approx 178.57$.
33. Let $a$ denote the acceleration due to gravity on Gzyx, which is unknown. When a ball is dropped from a height of 20 feet, we have $v=-a t$ and $y=-a t^{2} / 2+20$. We know the ball takes 2 seconds to hit the ground at $y=0$, so

$$
0=-a(2)^{2} / 2+20
$$

and we find $a=10$.
Dropping a ball from 200 feet, we have $v=-10 t$ and $y=-5 t^{2}+$ 200. It hits the ground when $0=-5 t^{2}+200$, or $t=\sqrt{40}=2 \sqrt{10}$. The velocity is then $v=-20 \sqrt{10}$.

## Section 1.3

6. Since this is only approximate, answers may vary.

7. Answers may vary. $y(-4) \approx 3$.

| $y^{x}$ | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| 3 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 2 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| 1 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 |
| 0 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 |
| -1 | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
| -2 | -6 | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 |
| -3 | -7 | -6 | -5 | -4 | -3 | -2 | -1 | 0 | 1 |
| -4 | -8 | -7 | -6 | -5 | -4 | -3 | -2 | -1 | 0 |


24. If $y(x)=k x$, then $y^{\prime}=k$, and indeed $x y^{\prime}=k x=y$.. The initial value problem $y(a)=b$ has one solution if $a \neq 0$, and if $a=0$, then it has either infinitely many solutions (if $b=0$ also) or no solutions (if $b \neq 0$ ).


