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MATH 285 G1 Final Exam (A) May 10, 2016 Instructor: Pascaleff

INSTRUCTIONS:

• Do all work on these sheets.

• Show all work.

• No books, notes, or calculators.
You are not permitted to use anything
other than a writing utensil.

• You have three hours.

Problem Possible Actual
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EC 20

Total 200
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Orthogonality formulas∫ L

−L
cos

mπt

L
cos
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L
dt =

{
0, m 6= n

L, m = n
(1)

∫ L

−L
sin

mπt

L
sin

nπt

L
dt =

{
0, m 6= n

L, m = n
(2)

∫ L

−L
cos

mπt

L
sin

nπt

L
dt = 0 (3)

Some integral formulas∫
u cosu du = u sinu+ cosu+ C (4)

∫
u sinu du = −u cosu+ sinu+ C (5)
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1. (20 points) Draw a slope field for the differential equation

dy

dx
= x2y.

Please draw about 16-20 slopes spread over all four quadrants of the xy-plane.
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2. (20 points) A carbon ball has an initial temperature of 30◦C at time t = 0. It is submerged
in a vat of molten iron at 1500◦C. Because the melting point of carbon is around 3500◦C, it
will not melt but rather heat up to the temperature of the iron, in accordance with Newton’s
law of cooling

dT

dt
= −1.7(T − 1500),

where T is the temperature of the ball. Find the amount of time it takes for the ball to reach
a temperature of 1000◦C. Your answer does not need to be simplified.
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3. (20 points) Find the solution of the initial value problem

y′ − 5y = 3e5x, y(0) = 0.
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4. (20 points, 5 points per part) In all parts, the unknown function is y(x), and your final answer
must be real-valued (not complex).

(a) Find the general solution of
y′′ − 10y′ + 25y = 0

(b) Find the general solution of
y′′ + 9y = x
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(c) Find the general solution of
y′′ + y′ + y = 0

(d) Find a particular solution of
y′′ + 4y′ + 3y = e−x
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5. (20 points) Find the Fourier series of the function f(t) which is periodic with period 2 and
which on the interval −1 < t ≤ 1 is defined by

f(t) =

{
0 −1 < t ≤ 0

5t 0 < t ≤ 1
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6. (20 points) The equation
2x′′ + 10x = F (t)

describes an undamped forced oscillator with mass m = 2 and spring constant k = 10 is driven
by a driving force F (t). Suppose that the position function x(t) is known and is described by
the Fourier series

x(t) =

∞∑
n=1

(−1)n

n3
sin

nπt

6

Determine the driving force F (t).
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7. (20 points) Consider the heat equation in a rod of length 10 (0 ≤ x ≤ 10)

∂u

∂t
= 100

∂2u

∂x2

We impose boundary conditions that the ends x = 0 and x = 10 are held fixed at zero
temperature:

u(0, t) = 0, u(10, t) = 0

We also impose the initial condition

u(x, 0) = 1.

Find the solution u(x, t).
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8. (20 points) Consider the eigenvalue problem
y′′ + λy = 0

y′(0) = 0

y(π) = 0

Show directly (that is, without quoting the main theorem of Sturm-Liouville theory) that
there are no negative eigenvalues in this problem.
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9. (20 points) Let X(x) = e10x + e−10x. Find a nonzero function Y (y) such that the product

u(x, y) = X(x)Y (y)

satisfies Laplace’s equation
∂2u

∂x2
+
∂2u

∂y2
= 0.
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10. (20 points) Consider the wave equation

∂2u

∂t2
=
∂2u

∂x2

on the interval 0 ≤ x ≤ 10. We impose the boundary conditions

∂u

∂x
(0, t) = 0,

∂u

∂x
(10, t) = 0.

The general solution of the wave equation with these conditions may be found by separation
of variables. The result is:

u(x, t) = C0 + C1t+
∞∑
n=1

(
An cos

nπt

10
+Bn sin

nπt

10

)
cos

nπx

10

where C0, C1, An, Bn are constants. You are not being asked to derive this formula;
you should take it as given in this problem.

Your task: Find the function u(x, t) that satisfies the wave equation and boundary conditions
described above as well as the initial conditions

u(x, 0) = 1,
∂u

∂t
(x, 0) =

∞∑
n=1

2

n2
cos

nπx

10
.

13



11. WARNING: THIS EXTRA CREDIT PROBLEM IS DIFFICULT and should
only be attempted after you have completed the rest of the exam to your satis-
faction. Partial credit is available on this problem.

(20 points Extra Credit) Show that the locus of points (x, y) in the plane satisfying the
equation

∞∑
n=1

(−1)n−1

n2
sinnx sinny = 0

consists of two sets of lines dividing the plane into squares of area π2.
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This page is for work that doesn’t fit on other pages.
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