NAME:


NetID:

MATH 285 G1 Final Exam (A)

## INSTRUCTIONS:

- Do all work on these sheets.
- Show all work.
- No books, notes, or calculators. You are not permitted to use anything other than a writing utensil.
- You have three hours.

May 10, 2016 Instructor: Pascaleff

| Problem | Possible | Actual |
| :---: | :---: | :---: |
| 1 | 20 |  |
| 2 | 20 |  |
| 3 | 20 |  |
| 4 | 20 |  |
| 5 | 20 |  |
| 6 | 20 |  |
| 7 | 20 |  |
| 8 | 20 |  |
| 9 | 20 |  |
| 10 | 20 |  |
| EC | 20 |  |
| Total | 200 |  |

## Orthogonality formulas

$$
\begin{gather*}
\int_{-L}^{L} \cos \frac{m \pi t}{L} \cos \frac{n \pi t}{L} d t= \begin{cases}0, & m \neq n \\
L, & m=n\end{cases}  \tag{1}\\
\int_{-L}^{L} \sin \frac{m \pi t}{L} \sin \frac{n \pi t}{L} d t= \begin{cases}0, & m \neq n \\
L, & m=n\end{cases}  \tag{2}\\
\int_{-L}^{L} \cos \frac{m \pi t}{L} \sin \frac{n \pi t}{L} d t=0 \tag{3}
\end{gather*}
$$

SOME INTEGRAL FORMULAS

$$
\begin{align*}
& \int u \cos u d u=u \sin u+\cos u+C  \tag{4}\\
& \int u \sin u d u=-u \cos u+\sin u+C \tag{5}
\end{align*}
$$

1. (20 points) Draw a slope field for the differential equation

$$
\frac{d y}{d x}=x^{2} y
$$

Please draw about 16-20 slopes spread over all four quadrants of the $x y$-plane.

2. (20 points) A carbon ball has an initial temperature of $30^{\circ} \mathrm{C}$ at time $t=0$. It is submerged in a vat of molten iron at $1500^{\circ} \mathrm{C}$. Because the melting point of carbon is around $3500^{\circ} \mathrm{C}$, it will not melt but rather heat up to the temperature of the iron, in accordance with Newton's law of cooling

$$
\frac{d T}{d t}=-1.7(T-1500)
$$

where $T$ is the temperature of the ball. Find the amount of time it takes for the ball to reach a temperature of $1000^{\circ} \mathrm{C}$. Your answer does not need to be simplified.

$$
\begin{array}{c|r}
\int \frac{d T}{T-1500}=\int-1.7 d t & T(0)= \\
\ln |T-1500|=-1.7 t+C & 30=1 \\
T-1500=C e^{-1.7 t} & C=- \\
T=1500+C e^{-1.7 t} & \\
T(t)=1500-1470 e^{-1.7 t}
\end{array}
$$

When is $T(t)=1000$ ?

$$
\begin{aligned}
\text { When is } T(t) & =1000 ? \\
1000 & =1500-1470 e^{-1.7 t} \\
-500 & =-1470 e^{-1.7 t} \\
\frac{50}{147} & =e^{-1.7 t} \\
\ln \left(\frac{50}{147}\right) & =-1.7 t \\
t & =\frac{1}{-1.7} \ln \left(\frac{50}{147}\right) \text { or } \frac{1}{1.7} \ln \left(\frac{147}{50}\right)
\end{aligned}
$$

3. (20 points) Find the solution of the initial value problem

$$
y^{\prime}-5 y=3 e^{5 x}, \quad y(0)=0
$$

Integrating fuctor method:

$$
\begin{gathered}
\rho=e^{\int-5 d x}=e^{-5 x} \\
e^{-5 x} y^{\prime}-5 e^{-5 x} y=3 \\
\frac{d}{d x}\left(e^{-5 x} y\right)=3 \\
e^{-5 x} y=3 x+C \\
y=3 x e^{5 x}+C e^{5 x} \\
y(0)=0 \Rightarrow 0=3 \cdot 0 \cdot e^{0}+C e^{0}=C \\
\text { so } y=3 x e^{5 x}
\end{gathered}
$$

4. (20 points, 5 points per part) In all parts, the unknown function is $y(x)$, and your final answer must be real-valued (not complex).
(a) Find the general solution of

$$
\begin{aligned}
& y^{\prime \prime}-10 y^{\prime}+25 y=0 \\
& r^{2}-10 r+25=0 \\
& (r-5)^{2}=0
\end{aligned}
$$

repeated root $r=5$

$$
y=c_{1} e^{5 x}+c_{2} x e^{5 x}
$$

(b) Find the general solution of

$$
y^{\prime \prime}+9 y=x
$$

Particular solution: $y_{\text {trial }}=A x+B$

$$
\begin{aligned}
& y^{\prime \prime}+9 y=0+9(A x+B)=x \\
& \Rightarrow A=\frac{1}{9} \text { and } B=0 \\
& y_{p}=\frac{1}{9} x
\end{aligned}
$$

homogeneons equiti $y^{\prime \prime}+9 y=0$

$$
\begin{gathered}
r^{2}+9=0 \\
r= \pm 3 i \\
y_{c}=c_{1} \cos 3 x+c_{2} \sin 3 x \\
y=y_{c}+y_{p}=c_{1} \cos 3 x+c_{2} \sin 3 x+\frac{1}{9} x
\end{gathered}
$$

(c) Find the general solution of

$$
\left.\begin{array}{rl}
y^{\prime \prime}+y^{\prime}+y=0 \\
r^{2}+r+1 & =0
\end{array}\right] \frac{-1 \pm \sqrt{1-4}}{2}=\frac{-1 \pm \sqrt{-3}}{2}=\frac{-1 \pm i \sqrt{3}}{2}, ~=c_{1} e^{-x / 2} \cos \frac{\sqrt{3} x}{2}+c_{2} e^{-x / 2} \sin \frac{\sqrt{3} x}{2}
$$

(d) Find a particular solution of

$$
\begin{gathered}
y^{\prime \prime}+4 y^{\prime}+3 y=e^{-x} \\
r^{2}+4 r+3=0 \\
(r+1)(r+3)=0
\end{gathered}
$$

Since $r=-1$ is a ret there is resonance.

$$
\begin{aligned}
& y_{\text {trial }}=A x e^{-x}+B e^{-x} \\
& y_{\text {tin al }}^{\prime}= A\left(-x e^{-x}+e^{-x}\right)-B e^{-x} \\
& y_{\text {trial }}^{\prime \prime}=A\left(x e^{-x}-e^{-x}-e^{-x}\right)+B e^{-x} \\
& y^{\prime \prime}+4 y^{\prime}+3 y=A\left(x e^{-x}-2 e^{-x}\right)+B e^{-x}+4 A\left(e^{-x}-x e^{-x}\right)-4 B e^{-x}+3 A x e^{-x}+3 B e^{-x} \\
&=(A-4 A+3 A) x e^{-x}+(-2 A+B+4 A-4 B+3 B) e^{-x} \\
&= O x e^{-x}+(2 A) e^{-x}
\end{aligned}
$$

we want this to equal $e^{-x}$ so lie Take $A=\frac{1}{2}$, and $B=$ any thin.
So $\quad y_{p}=\frac{1}{2} x e^{-x}$ is a particular solution.
5. (20 points) Find the Fourier series of the function $f(t)$ which is periodic with period 2 and which on the interval $-1<t \leq 1$ is defined by

$$
\begin{aligned}
& f(t)= \begin{cases}0 & -1<t \leq 0 \\
5 t & 0<t \leq 1\end{cases} \\
& a_{0}=\frac{1}{1} \int_{-1}^{1} f(t) d t=\int_{0}^{1} 5 t d t=\left[\frac{5}{2} t^{2}\right]_{0}^{1}=\frac{5}{2} \\
& a_{n}=\frac{1}{1} \int_{-1}^{1} f(t) \cos n \operatorname{\pi ot} d t=\int_{0}^{1} 5 t \cos n \pi t d t \\
& =\left[\frac{1}{n \pi} 5 t \sin n \pi t+\frac{1}{(n \pi)^{2}} 5 \cos n \pi t\right]_{0}^{1}=\frac{5}{(n \pi)^{2}}(\cos n \pi-1) \\
& =\frac{5}{(n \pi)^{2}}\left((-1)^{n}-1\right)=\left\{\begin{array}{cc}
0 & n \text { even } \\
\frac{-10}{(n \pi)^{2}} & n \text { id }
\end{array}\right. \\
& b_{n}=\frac{1}{1} \int_{-1}^{1} f(t) \sin n \pi t d t=\int_{0}^{1} 5 t \sin n \pi t d t \\
& =\left[-\frac{1}{n \pi} 5 t \cos n \pi t+\frac{1}{(n \pi)^{2}} 5 \sin n \pi t\right]_{0}^{1} \\
& =-\frac{1}{n \pi} 5 \cos n \pi=\frac{(-1) 5(-1)^{n}}{n \pi}=\frac{5(-1)^{n+1}}{n \pi}
\end{aligned}
$$

$$
\left.f(t) \sim \frac{5}{4}+\sum_{n=1}^{\infty}\left(\frac{5}{(n \pi)^{2}}(-1)^{n}-1\right) \cos n \pi t+\frac{5(-1)^{n+1}}{n \pi} \sin n \pi t\right)
$$

6. (20 points) The equation

$$
2 x^{\prime \prime}+10 x=F(t)
$$

describes an undamped forced oscillator with mass $m=2$ and spring constant $k=10$ is driven by a driving force $F(t)$. Suppose that the position function $x(t)$ is known and is described by the Fourier series

$$
x(t)=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{3}} \sin \frac{n \pi t}{6}
$$

Determine the driving force $F(t)$.

$$
\begin{aligned}
& x^{\prime}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{3}} \frac{n \pi}{6} \cos \frac{n \pi t}{6}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}\left(\frac{\pi}{6}\right) \cos \frac{n \pi t}{6} \\
& x^{\prime \prime}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}\left(\frac{\pi}{6}\right)\left(-\frac{-n \pi}{6} \sin \frac{n \pi t}{6}\right)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}\left(\frac{\pi}{6}\right)^{2} \sin \frac{n \pi t}{6} \\
& F(t)=2 x^{\prime \prime}+10 x=2 \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}\left(\frac{\pi}{6}\right)^{2} \sin \frac{n \pi t}{6}+10 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{3}} \sin \frac{n \pi t}{6} \\
& F(t)=\sum_{n=1}^{\infty}\left[2\left(\frac{\pi}{6}\right)^{2} \frac{(-1)^{n+1}}{n}+10 \frac{\left.(-1)^{n}\right]}{n^{3}}\right] \sin \frac{n \pi t}{6}
\end{aligned}
$$

7. (20 points) Consider the heat equation in a rod of length $10(0 \leq x \leq 10)$

$$
\frac{\partial u}{\partial t}=100 \frac{\partial^{2} u}{\partial x^{2}}
$$

We impose boundary conditions that the ends $x=0$ and $x=10$ are held fixed at zero temperature:

$$
u(0, t)=0, \quad u(10, t)=0
$$

We also impose the initial condition

$$
u(x, 0)=1
$$

Find the solution $u(x, t)$.
Geneal solution for fixed ends

$$
\begin{aligned}
& u(x, t)=\sum_{n=1}^{\infty} c_{n} e^{-k\left(\frac{n \pi}{\tau}\right)^{2} t} \sin \frac{n \pi x}{L} \\
& \text { With } k=100, L=10 \\
& u(x, t)=\sum_{n=1}^{\infty} c_{n} e^{-100\left(\frac{n \pi}{10}\right)^{2} t} \sin \frac{n \pi x}{10}=\sum_{n=1}^{\infty} c_{n} e^{-n^{2} \pi^{2} t} \sin \frac{n \pi x}{10} \\
& 1=u(x, 0)=\sum_{n=1}^{\infty} c_{n} \sin \frac{n \pi x}{10} \quad \text { sure sanies } \\
& c_{n}=\frac{2}{10} \int_{0}^{10} 1 \sin \frac{n \pi x}{10} d x=\frac{2}{10}\left[-\frac{10}{n \pi} \cos \frac{n \pi x}{10}\right]_{0}^{10} \\
& =-\frac{2}{n \pi}(\cos n \pi-1)=\frac{2}{n \pi}\left(1-(-1)^{n}\right) \\
& u(x, t)=\sum_{n=1}^{\infty} \frac{2}{n \pi}\left(1-(-1)^{n}\right) e^{-n^{2} \pi^{2} t} \sin \frac{n \pi x}{10}
\end{aligned}
$$

8. (20 points) Consider the eigenvalue problem

$$
\left\{\begin{array}{l}
y^{\prime \prime}+\lambda y=0 \\
y^{\prime}(0)=0 \\
y(\pi)=0
\end{array}\right.
$$

Show directly (that is, without quoting the main theorem of Sturm-Liouville theory) that there are no negative eigenvalues in this problem.
$\lambda<0$ : Write $\lambda=-\alpha^{2}$ with $\alpha>0$.

$$
\begin{aligned}
& y^{\prime \prime}-\alpha^{2} y=0 \Rightarrow r= \pm \alpha \text { so } y=A e^{\alpha x}+B e^{-\alpha x} \\
& y^{\prime}=A \alpha e^{\alpha x}-B \alpha e^{-\alpha x} \\
& y^{\prime}(0)=0 \Rightarrow A \alpha-B \alpha=0 \Rightarrow A-B=0 \Rightarrow A=B
\end{aligned}
$$

This $y(x)=A\left(e^{\alpha x}+e^{-\alpha x}\right)$

$$
y(\pi)=0 \Rightarrow A\left(e^{\alpha \pi}+e^{-\alpha \pi}\right)=0
$$

This forces $A=0$ culls $e^{\alpha \pi}+e^{-\alpha \pi}=0$

$$
\begin{aligned}
& e^{\alpha \pi}=-e^{-\alpha \pi} \\
& e^{2 \alpha \pi}=-1
\end{aligned}
$$

But $e^{2 \alpha \pi}$ is always positive, so this is impossible.
Thus $A$ is forced to be uso, and $\lambda=-\alpha^{2}<0$ is not an eigenvalue.
9. (20 points) Let $X(x)=e^{10 x}+e^{-10 x}$. Find a nonzero function $Y(y)$ such that the product

$$
u(x, y)=X(x) Y(y)
$$

satisfies Laplace's equation

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0
$$

$$
u(x, y)=X(x) Y(y)=\left(e^{10 x}+e^{-10 x}\right) Y(y)
$$

Then $\frac{\partial u}{\partial x}=\left(10 e^{10 x}-10 e^{-10 x}\right) y(y)$

$$
\begin{gathered}
\frac{\partial^{2} u}{\partial x^{2}}=\left(100 e^{10 x}+100 e^{-10 x}\right) Y(y) \\
\frac{\partial u}{\partial y}=\left(e^{10 x}+e^{-10 x}\right) \frac{d y}{d y} \\
\frac{\partial^{2} u}{\partial y^{2}}=\left(e^{10 x}+e^{-10 x}\right) \frac{d^{2} y}{d y^{2}} \\
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=100\left(e^{10 x}+e^{-10 x}\right) Y(y)+\left(e^{10 x}+e^{-10 x}\right) \frac{d^{2} y}{d y^{2}}
\end{gathered}
$$

For this to be zero me mush have

$$
\frac{d^{2} y}{d y^{2}}+100 y=0
$$

Geneal solution $\quad Y(y)=A \cos 10 y+B \sin 10 y$
Also correct: $Y(y)=\cos 10 y$

$$
y(y)=\sin 10 y
$$

or any particular combination there of.
10. (20 points) Consider the wave equation

$$
\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}
$$

on the interval $0 \leq x \leq 10$. We impose the boundary conditions

$$
\frac{\partial u}{\partial x}(0, t)=0, \quad \frac{\partial u}{\partial x}(10, t)=0
$$

The general solution of the wave equation with these conditions may be found by separation of variables. The result is:

$$
u(x, t)=C_{0}+C_{1} t+\sum_{n=1}^{\infty}\left(A_{n} \cos \frac{n \pi t}{10}+B_{n} \sin \frac{n \pi t}{10}\right) \cos \frac{n \pi x}{10}
$$

where $C_{0}, C_{1}, A_{n}, B_{n}$ are constants. You are not being asked to derive this formula; you should take it as given in this problem.
Your task: Find the function $u(x, t)$ that satisfies the wave equation and boundary conditions described above as well as the initial conditions

$$
\begin{array}{r}
u(x, 0)=1, \quad \frac{\partial u}{\partial t}(x, 0)=\sum_{n=1}^{\infty} \frac{2}{n^{2}} \cos \frac{n \pi x}{10} \\
u(x, 0)=C_{0}+\sum_{n=1}^{\infty} A_{n} \cos \frac{n \pi x}{10}=1
\end{array}
$$

$$
\text { Take } C_{0}=1, A_{n}=0
$$

$$
\frac{\partial u}{\partial t}(x, 0)=C_{1}+\sum_{n=1}^{\infty} \frac{n \pi}{10} B_{n} \cos \frac{n \pi x}{10}=\sum_{n=1}^{\infty} \frac{2}{n^{2}} \cos \frac{n \pi x}{10}
$$

Take $C_{1}=0, \frac{n \pi}{10} B_{n}=\frac{2}{n^{2}} \Rightarrow B_{n}=\frac{20}{n^{3} \pi}$

$$
u(x, t)=1+\sum_{n=1}^{\infty} \frac{20}{n^{2} \pi} \sin \frac{n \pi t}{10} \cos \frac{n \pi x}{10}
$$

11. WARNING: THIS EXTRA CREDIT PROBLEM IS DIFFICULT and should only be attempted after you have completed the rest of the exam to your satisfaction. Partial credit is available on this problem.
(20 points Extra Credit) Show that the locus of points $(x, y)$ in the plane satisfying the equation

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{2}} \sin n x \sin n y=0
$$

consists of two sets of lines dividing the plane into squares of area $\pi^{2}$.

This page is for work that doesn't fit on other pages.

This page is for work that doesn't fit on other pages.

This page is for work that doesn't fit on other pages.

This page is for work that doesn't fit on other pages.

