EXTRA CREDIT SOLUTION

JAMES PASCALEFF

Problem. ${ }^{1}$ (20 points) Show that the locus of points (x, y) in the plane satisfying the equation

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{2}} \sin n x \sin n y=0
$$

consists of two sets of lines dividing the plane into squares of area π^{2}.
Remarks. It is clear that if either $x=k \pi$ or $y=k \pi$ for an integer k, then all terms in the series are equal to zero. The equations $x=k \pi$ define vertical lines, while the equations $y=k \pi$ define horizontal lines. These lines divide the plane into squares of side length π. I gave 5 points for figuring this out. The real matter of the problem is to show that the function

$$
F(x, y)=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{2}} \sin n x \sin n y
$$

is not equal to zero at any points other than those where $x=k \pi$ or $y=k \pi$. Solution. Using the identity

$$
\sin A \sin B=\frac{1}{2}(\cos (A-B)-\cos (A+B))
$$

we find

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{2}} \sin n x \sin n y=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{2}} \frac{1}{2}[\cos (n(x-y))-\cos (n(x+y))]
$$

Denoting by $F(x, y)$ this function, and defining a new function $G(z)$ by

$$
G(z)=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2 n^{2}} \cos n z
$$

we have the identity ${ }^{2}$

$$
F(x, y)=G(x-y)-G(x+y)
$$

We now seek to determine the function $G(z)$. Some guesswork is involved at this point. The fact that $G(z)$ is even, together with the n^{2} in the denominator, suggest that $G(z)$ is related to z^{2}. To that end, let $g(z)$ be the periodic function of period 2π that on the interval $-\pi \leq z<\pi$ satisfies

[^0]$g(z)=z^{2}$. The Fourier series of this function has only a constant term and cosine terms. The coefficients are
\[

$$
\begin{aligned}
a_{0} & =\frac{2}{\pi} \int_{0}^{\pi} z^{2} d z=\frac{2}{\pi} \frac{\pi^{3}}{3}=\frac{2 \pi^{2}}{3} \\
a_{n}=\frac{2}{\pi} \int_{0}^{\pi} z^{2} \cos n z d z & =\frac{2}{\pi}\left[\frac{1}{n} z^{2} \sin n z+\frac{2}{n^{2}} z \cos n z-\frac{2}{n^{3}} \sin n z\right]_{0}^{\pi} \\
& =\frac{2}{\pi} \frac{2}{n^{2}} \pi \cos n \pi=\frac{4(-1)^{n}}{n^{2}} \\
g(z) & =\frac{\pi^{2}}{3}+4 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \cos n z
\end{aligned}
$$
\]

Comparing with $G(z)$, we find $\left(g(z)-\pi^{2} / 3\right) / 4=-2 G(z)$, or

$$
G(z)=\frac{\pi^{2}}{24}-\frac{1}{8} g(z)
$$

With this in hand,

$$
F(x, y)=G(x-y)-G(x+y)=\left(\frac{\pi^{2}}{24}-\frac{1}{8} g(x-y)\right)-\left(\frac{\pi^{2}}{24}-\frac{1}{8} g(x+y)\right)=\frac{1}{8}(g(x+y)-g(x-y))
$$

The locus defined by the equation $F(x, y)=0$ is thus the same as that defined by the equation $g(x+y)=g(x-y)$. Change variables to $u=x+y$ and $v=x-y$, so $x=(u+v) / 2$ and $y=(u-v) / 2$. We must solve the equation $g(u)=g(v)$. As $g(z)=z^{2}$ for $-\pi<z<\pi$, and $g(z)$ is periodic of period 2π, the only way $g(u)$ can equal $g(v)$ is if either $u=v+2 \pi k$ or $u=-v+2 \pi k$ for some integer $k .{ }^{3}$ The condition $u=v+2 \pi k$ is equivalent to $y=(u-v) / 2=\pi k$, while the condition $u=-v+2 \pi k$ is equivalent to $x=(u+v) / 2=\pi k$. Thus we have shown that $F(x, y)=0$ if and only if either x or y is an integer multiple of π.

[^1]
[^0]: ${ }^{1}$ According to A Course of Modern Analysis by Whittaker and Watson, this problem appeared on the Cambridge Mathematical Tripos in the year 1895.
 ${ }^{2}$ The function $F(x, y)$ satisfies the wave equation $F_{x x}=F_{y y}$, and this identity is the decomposition into left-moving and right-moving waves.

[^1]: ${ }^{3}$ This is more generally true as long as $g(z)$ is a 2π-periodic even function that is strictly monotonic on the interval $0 \leq z \leq \pi$.

