name: Solutions

NetID:

MATH 285 G1 Exam 1 (B) February 17, 2016 Instructor: Pascaleff

INSTRUCTIONS:

- Do all work on these sheets.
- Show all work.
- No notes, books, calculators, or other electronic devices are permitted.

Problem	Possible	Actual
1	20	
2	20	
3	20	
4	20	
5	20	
Total	100	

1. (20 points) Consider the differential equation

$$
\frac{d y}{d x}=(x+2) y
$$

(a) (10 points) Draw a slope field for this equation.

(b) (10 points) Given the initial condition $y(1)=1$, use Euler's method with two steps to approximate $y(1.2)$.

Step size $h=.1$

$$
\begin{aligned}
& x_{0}=1 \quad \begin{aligned}
& y_{0}=1 \\
& x_{1}=1.1 \quad y_{1}=y_{0}+h\left(x_{0}+2\right) y_{0}=1+.1(3)(1)=1.3 \\
& x_{2}=1.2 \quad y_{2}=y_{1}+h\left(x_{1}+2\right) y_{1}=1.3+.1(3.1)(1.3) \\
&=1.3+.1(4.03) \\
&=1.3+.403 \\
&=1.703 \\
& \text { so } y(1.2) \approx 1.703
\end{aligned}
\end{aligned}
$$

2. (20 points) Let $y(x)$ be a solution of the initial value problem

$$
\frac{d y}{d x}=1+y^{2}, \quad y(0)=2
$$

Starting from $y_{0}(x)=2$, compute the first and second Picard approximations $y_{1}(x)$ and $y_{2}(x)$, and use $y_{2}(x)$ to estimate $y(0.1)$.

$$
\begin{aligned}
& y_{1}(x)=2+\int_{0}^{x}\left(1+y_{0}(t)^{2}\right) d t=2+\int_{0}^{x}\left(1+2^{2}\right) d t \\
&=2+\int_{0}^{x} 5 d t=2+5 x \\
& y_{2}(x)=2+\int_{0}^{x}\left(1+y_{1}(t)^{2}\right) d t=2+\int_{0}^{x}\left(1+(2+5 t)^{2}\right) d t \\
&=2+\int_{0}^{x}\left(1+4+20 t+25 t^{2}\right) d t \\
&=2+5 x+10 x^{2}+\frac{25}{3} x^{3} \\
& \begin{aligned}
y(0.1) & \approx y_{2}(0.1)
\end{aligned} \\
& \approx 2+5(.1)+10(.1)^{2}+\frac{25}{3}(.1)^{3} \\
&=2+.5+.1+8.3(.1)^{3}+.0083 \\
&=2.6083
\end{aligned}
$$

3. (20 points) Find the general solution of

$$
\frac{d y}{d x}=e^{3 x}-4 y
$$

First order linear equation:

$$
\begin{gathered}
\frac{d y}{d x}+4 y=e^{3 x} \\
P(x)=4 \quad Q(x)=e^{3 x}
\end{gathered}
$$

Integrating factor $g(x)=e^{\int p(x) d x}=e^{4 x}$

$$
\begin{aligned}
& e^{4 x} \frac{d y}{d x}+4 e^{4 x} y=e^{4 x} e^{3 x}=e^{7 x} \\
& \frac{d}{d x}\left(e^{4 x} y\right)=e^{7 x} \\
& e^{4 x} y=\int e^{7 x} d x=\frac{1}{7} e^{7 x}+C \\
& y=\frac{1}{7} e^{3 x}+C e^{-4 x}
\end{aligned}
$$

4. (20 points) Let $P(t)$ be denote a population of fish in a lake. This population is governed by the differential equation

$$
\frac{d P}{d t}=P(200-P)-100
$$

(a) (10 points) Find the equilibrium solutions, and determine whether each is stable or unstable.

Equilibrium solutions are solutions of

$$
\begin{aligned}
& P(200-P)-100=0 \\
& -P^{2}+200 P-100=0 \\
& P^{2}-200 P+100=0 \\
P= & \frac{200 \pm \sqrt{200^{2}-4 \cdot 100}}{2}=\frac{200 \pm \sqrt{40000-400}}{2}=\frac{200 \pm \sqrt{39600}}{2} \\
= & 100 \pm 5 \sqrt{396}
\end{aligned}
$$

$$
f(p)=-p^{2}+200 p-100
$$

$$
\begin{aligned}
& P=100+5 \sqrt{396} \text { is stable } \\
& P=100-5 \sqrt{396} \text { is unstable. }
\end{aligned}
$$

(b) (10 points) Draw a qualitative plot of the solutions of this differential equation.

5. (20 points) A metal ball has been heated to $300^{\circ} \mathrm{C}$. It is placed into a bath of water at $30^{\circ} \mathrm{C}$. After 5 seconds, it has cooled to a temperature of $200^{\circ} \mathrm{C}$.
Suppose now that the metal ball is cooled to $0^{\circ} \mathrm{C}$, and again placed into a bath of water at $30^{\circ} \mathrm{C}$. How long will it take to reach a temperature of $20^{\circ} \mathrm{C}$? Your answer does not need to be simplified.
In both situations, the process is governed by Newton's law of cooling:

$$
\frac{d T}{d t}=-k(T-A)
$$

where A is the temperature of the water, and k is a constant.

$$
\begin{aligned}
& \frac{d T}{d t}=-k(T-A) \\
& \int \frac{d T}{T-A}=\int-k d t \\
& \ln |T-A|=-k t+C \\
& |T-A|=e^{-k t} e^{C} \\
& T-A=C e^{-k t} \\
& T=A+C e^{-k t}
\end{aligned}
$$

First cause $A=30$

$$
T(0)=300
$$

$$
T(5)=200
$$

$$
300=30+C e^{-k 0}
$$

$$
270=c
$$

$200=30+270 e^{-k 5}$

$$
170=270 e^{-5 k}
$$

$$
e^{5 k}=\frac{270}{170}=\frac{27}{17}
$$

$$
k=\frac{1}{5} \ln \left(\frac{27}{17}\right.
$$

Second cause $A=30$

$$
T(0)=0
$$

$$
0=30+C e^{0}
$$

$$
-30=C
$$

$$
\begin{aligned}
& T(t)=30-30 e^{-k t} \\
& T(t)=20
\end{aligned}
$$

$$
20=30-30 e^{-k t}
$$

$$
\begin{aligned}
& 30 e^{-k t}=10 \\
& e^{-k t}=\frac{1}{3} \\
& -k t=\ln \left(\frac{1}{3}\right)=-\ln (3)
\end{aligned}
$$

$$
t=\frac{\ln (3)}{\frac{1}{5} \ln \left(\frac{27}{17}\right)}
$$

This page is for work that doesn't fit on the other pages.

