DIFFERENTIABLE MANIFOLDS II: HOMEWORK 8

JAMES PASCALEFF

(1) Let (M,g) be a Riemannian manifold such the for any two points $p, q \in M$, the parallel transport $T_pM \to T_qM$ is the same for all paths joining p to q. Show that M must be flat, that is, the Riemann curvature tensor is identically zero. *Hint:* Use the relationship

$$\frac{D}{\partial s}\frac{D}{\partial t}V - \frac{D}{\partial t}\frac{D}{\partial s}V = R\left(\frac{\partial\alpha}{\partial s}, \frac{\partial\alpha}{\partial t}\right)V$$

for an parametrized surface $\alpha(s,t)$ and a vector field V along the parametrized surface.

(2) Let ∇ be a connection on a vector bundle $E \to M$. Let $\{s_i\}_{i=1}^r$ and $\{\tilde{s}_i\}_{i=1}^r$ be two local frames for E (over some open set U in M). Let $G: U \to \operatorname{GL}(n, \mathbb{R})$ be the change-of-basis matrix. Let A and \tilde{A} be the matrix-valued one-forms representing ∇ in the two frames, and let F and \tilde{F} be the matrix-valued two-forms representing the curvature of ∇ in the two frames. Show that the transformation laws

$$\tilde{A} = G^{-1}AG + G^{-1}dG, \quad \tilde{F} = G^{-1}FG$$

are consistent with the structure equations

$$F = dA + [A, A], \quad \tilde{F} = d\tilde{A} + [\tilde{A}, \tilde{A}]$$

Recall that [A, A] means the two form satisfying [A, A](X, Y) = [A(X), A(Y)].

(3) Let \mathfrak{g} be a Lie algebra. Recall that this means that \mathfrak{g} is a vector space endowed with bilinear operation $[,]: \mathfrak{g} \otimes \mathfrak{g} \to \mathfrak{g}$ satisfying skew-symmetry and the Jacobi identity:

$$[x,y] = -[y,x], \quad [x,[y,z]] + [y,[z,x]] + [z,[x,y]] = 0.$$

Now let M be a manifold. There are vector bundles $\wedge^p(T^*M) \otimes \mathfrak{g}$ over M, consisting of p-forms with values in \mathfrak{g} . We write $\Omega^p(M,\mathfrak{g})$ for the space of sections of this bundle. The purpose of this exercise is to show that the space of \mathfrak{g} -valued differential forms

$$\Omega^{\bullet}(M,\mathfrak{g}) = \bigoplus_{p=0}^{\dim M} \Omega^p(M,\mathfrak{g})$$

is a differential graded Lie algebra. The exterior derivative d extends to \mathfrak{g} -valued forms: just differentiate the differential form part treating the \mathfrak{g} -coefficient as a constant. There is also an extension of the Lie bracket on \mathfrak{g} to \mathfrak{g} -valued forms: given $\omega \in \Omega^p(M, \mathfrak{g})$ and $\eta \in \Omega^q(M, \mathfrak{g})$, first take wedge product $\omega \wedge \eta \in \Omega^{p+q}(M, \mathfrak{g} \otimes \mathfrak{g})$. The coefficients are multiplied "formally," so the result is a $\mathfrak{g} \otimes \mathfrak{g}$ -valued form. Then we apply the bracket map $[,]: \mathfrak{g} \otimes \mathfrak{g} \to \mathfrak{g}$ to the coefficients, and the result is again a \mathfrak{g} -valued form that we denote

$$[\omega \wedge \eta] \in \Omega^{p+q}(M, \mathfrak{g})$$

The axioms of a differential grade Lie algebra are, first, that d is a derivation of $[\wedge]$:

$$d[\omega \wedge \eta] = [d\omega \wedge \eta] + (-1)^{\deg(\omega)} [\omega \wedge d\eta],$$

second, that $[\wedge]$ is skew-symmetric in the graded sense:

$$[\omega \wedge \eta] = -(-1)^{\deg(\omega)\deg(\eta)}[\eta \wedge \omega],$$

and third, that the graded Jacobi identity holds:

$$(-1)^{\bigstar}[\omega \wedge [\eta \wedge \theta]] + (-1)^{\heartsuit}[\eta \wedge [\theta \wedge \omega]] + (-1)^{\bigstar}[\theta \wedge [\omega \wedge \eta]] = 0$$

where $(-1)^{\bigstar}, (-1)^{\heartsuit}, (-1)^{\bigstar}$ are some signs that I leave to you to figure out.

- (a) Show that $\Omega^{\bullet}(M, \mathfrak{g})$ is indeed a differential graded Lie algebra (figure out $\blacklozenge, \heartsuit, \clubsuit$ ought to be in order to make this true).
- (b) Show that, if \mathfrak{g} is the Lie algebra of all $n \times n$ matrices, and A is the \mathfrak{g} -valued 1-form corresponding to a connection ∇ , and F is the \mathfrak{g} -valued curvature 2-form, then the structure equation reads

$$F = dA + \frac{1}{2}[A \wedge A]$$