DIFFERENTIABLE MANIFOLDS II: HOMEWORK 7

JAMES PASCALEFF

These problems are drawn from Chapter 9 of A Comprehensive Introduction to Differential Geometry, Volume I, by M. Spivak.
(1) Definition: if $\gamma:[a, b] \rightarrow M$ is a path, and $p:[\alpha, \beta] \rightarrow[a, b]$ is a diffeomorphism, then $c=\gamma \circ p:[\alpha, \beta] \rightarrow M$ is a reparametrization of γ.
(a) Show that the length of a path is independent of its parametrization, but that the energy is not. Namely show that $\ell(c)=\ell(\gamma)$, but that $E(c) \neq E(\gamma)$ in general.
(b) Let $\gamma:[a, b] \rightarrow M$ be a path. Show that

$$
[\ell(\gamma)]^{2} \leq(b-a) E(\gamma)
$$

with equality if and only if γ has constant speed. Conclude that minimizers of energy also minimize length, and minimizers of length are reparametrizations of minimizers of energy. Hint: Use the Schwarz inequality

$$
\left(\int f g\right)^{2} \leq\left(\int f^{2}\right)\left(\int g^{2}\right)
$$

(c) Let γ be a geodesic, and let $c=\gamma \circ p$ be a reparametrization of γ. Show that, in local coordinates, c satisfies the equation

$$
\frac{d^{2} c^{k}}{d t^{2}}+\sum_{i, j=1}^{n} \Gamma_{i j}^{k}(c(t)) \frac{d c^{i}}{d t} \frac{d c^{j}}{d t}=\frac{d c^{k}}{d t} \frac{p^{\prime \prime}(t)}{p^{\prime}(t)}
$$

and conversely, if c satisfies this equation then γ must be a geodesic.
(d) Show also that if c is any path satisfying

$$
\frac{d^{2} c^{k}}{d t^{2}}+\sum_{i, j=1}^{n} \Gamma_{i j}^{k}(c(t)) \frac{d c^{i}}{d t} \frac{d c^{j}}{d t}=\frac{d c^{k}}{d t} \mu(t),
$$

for some function $\mu: \mathbb{R} \rightarrow \mathbb{R}$, then c is a reparametrization of a geodesic. (This equation says that the covariant acceleration of c is proportional to the velocity).
(2) Let $\mathbb{H}=\{(x, y) \mid y>0\}$ be the upper half plane with the Riemannian metric

$$
g=\frac{d x \otimes d x+d y \otimes d y}{y^{2}}
$$

(The Christoffel symbols of this manifold were calculated in an earlier problem.) Show that the geodesics in (\mathbb{H}, g) are precisely the semi-circles with center on the x-axis, and straight lines parallel to the y-axis, with suitable parametrizations in each case. Find the parametrizations that make those curves geodesics. Hint: The last part of the previous problem lets you approach this question starting with any parametrization of the semicircle or line.
(3) Let (M, g) be a Riemannian manifold with the property that any two points can be joined by a unique geodesic of minimal length. Does it follow that (M, g) is complete?
(4) Let p be a point in a non-compact complete Riemannian manifold (M, g). Show that M contains an infinite geodesic "ray" starting at p. That is, find a geodesic $\gamma:[0, \infty) \rightarrow M$ with $\gamma(0)=p$ such that γ is a minimal geodesic between any two of its points.

