DIFFERENTIABLE MANIFOLDS II: HOMEWORK 6

JAMES PASCALEFF

Unless other wise specified, (M, g) is a Riemannian manifold and ∇ is its Levi-Civita connection.
(1) Let $\gamma:[a, b] \rightarrow M$ be a path.
(a) Show that the covariant derivative $\frac{D}{d t}$ along γ has the property that it is compatible with the metric: For any vector fields $V(t), W(t)$ along γ, we have

$$
\frac{d}{d t} g(V(t), W(t))=g\left(\frac{D V}{d t}, W(t)\right)+g\left(V(t), \frac{D W}{d t}\right)
$$

Hint: Use the fact that the connection ∇ from which $\frac{D}{d t}$ is derived is compatible with the metric. The most direct/painful route is to use the expression in terms of Christoffel symbols. The fact that ∇ is compatible with g becomes the identity

$$
\frac{\partial g_{i j}}{\partial x^{k}}=\sum_{\ell} g_{\ell j} \Gamma_{k i}^{\ell}+g_{i \ell} \Gamma_{k j}^{\ell}
$$

(b) Let $P_{\gamma}: T_{\gamma(a)} M \rightarrow T_{\gamma(b)} M$ be the parallel transport operator of the Levi-Civita connection that is defined by solving the initial value problem

$$
\frac{D V}{d t}=0, V(a)=V_{0} \in T_{\gamma(a)} M
$$

Show that P_{γ} preserves g in the sense that

$$
g_{\gamma(a)}(v, w)=g_{\gamma(b)}\left(P_{\gamma}(v), P_{\gamma}(w)\right)
$$

for any $v, w \in T_{\gamma(a)} M$.
(2) Let $\alpha:[0,1] \times[0,1] \rightarrow M,(s, t) \mapsto \alpha(s, t)$ be a smooth parametrized surface in M.

Show that when ∇ is a torsion free connection in the tangent bundle $T M$,

$$
\frac{D}{\partial s} \frac{\partial \alpha}{\partial t}=\frac{D}{\partial t} \frac{\partial \alpha}{\partial s}
$$

Hint: Express everything in local coordinates using Christoffel symbols. Use the fact that torsion freeness is equivalent to the symmetry condition

$$
\Gamma_{i j}^{k}=\Gamma_{j i}^{k} .
$$

Recall definitions: A vector field along α is a smooth assignment of a vector $V(s, t) \in$ $T_{\alpha(s, t)} M$ for each (s, t) in the domain (or more precisely a smooth section of pullback vector bundle $\left.\alpha^{*} T M \rightarrow[0,1] \times[0,1]\right)$. We define a covariant partial derivative

$$
\frac{D V}{\partial s}
$$

as follows: for each fixed value $t=t_{0}$, we obtain a vector field $V\left(s, t_{0}\right)$ along a path $\alpha\left(s, t_{0}\right)$, where s is allowed to vary, and we take the covariant derivative of this vector field along this path. The other covariant partial derivative $\frac{D V}{\partial t}$ is defined analogously.
(3) Let $S^{n}=\left\{\mathbf{x} \in \mathbb{R}^{n+1} \mid \mathbf{x} \cdot \mathbf{x}=1\right\}$ denote the unit sphere. Define the round metric g to be the restriction of the Euclidean metric on \mathbb{R}^{n+1}; that is, we regard $T_{\mathbf{x}} S^{n}$ as a subspace of $T_{\mathbf{x}} \mathbb{R}^{n+1}$, and we let g be the dot product in the latter space.
(a) Express the round metric g in local coordinate charts on S^{n}. You may use whatever charts you like.
(b) Show that any orthogonal transformation $A \in \mathrm{O}(n+1)$ restricts to an isometry of $\left(S^{n}, g\right)$. Hint: This should be obvious. Recall definition: An orthogonal transformation of \mathbb{R}^{n+1} is a linear transformation that preserves the dot products of vectors.
(c) Show that the geodesics in $\left(S^{n}, g\right)$ are the great circles (the intersection of S^{n} with a plane in \mathbb{R}^{n+1} passing through 0). Hint: It suffices to show that any particular great circle is a geodesic. Then we argue that an isometry takes a geodesic to a geodesic, and that any great circle may be taken to any other great circle by an orthogonal transformation $A \in \mathrm{O}(n+1)$.
(d) Calculate the parallel transport of the Levi-Civita connection along a geodesic/great circle. That is let γ be a segment of a great circle connecting points p and q, and find the operator

$$
P_{\gamma}: T_{p} S^{n} \rightarrow T_{q} S^{n}
$$

Hint: The answer is related to the rotation of the sphere in the plane of the great circle containing γ.
(4) Let $U: M \rightarrow \mathbb{R}$ be a smooth function consider the functional defined on smooth paths $\gamma:[a, b] \rightarrow M$ called the action

$$
S(\gamma)=\int_{a}^{b}\left[\frac{1}{2} g(\dot{\gamma}(t), \dot{\gamma}(t))-U(\gamma(t))\right] d t
$$

Fix two points p and q in M, and consider the restriction of this functional to the set of paths such that $\gamma(a)=p$ and $\gamma(b)=q$. Show that a critical point of the restricted functional must satisfy the equation

$$
\frac{D}{d t}(\dot{\gamma})=-\operatorname{grad} U .
$$

Definition: The gradient of a function U on a Riemannian manifold (M, g) is the unique vector field $\operatorname{grad} U$ such that

$$
g(v, \operatorname{grad} U)=d U(v),
$$

where $d U$ is the differential of U and v is a tangent vector.

