
DIFFERENTIABLE MANIFOLDS II: HOMEWORK 5

JAMES PASCALEFF

Throughout, let (M, g) denote a connected Riemannian manifold.
Definition: an isometry between two Riemannian manifolds (M, g) and (N,h) is a diffeo-

morphism f : M → N with the property that the inner product with respect to g of two tangent
vectors to M equals the inner product with respect to h of the corresponding vectors in N . That
is to say

gp(v, w) = hf(p)(Dfp(v), Dfp(w))

for all p ∈ M and all v, w ∈ TpM . Two Riemannian manifolds are isometric if there is some
isometry between them.

(1) Let U ⊂ Rn be an open set. Let v · w denote the ordinary dot product of tangent vectors
v, w ∈ TpU . Let g be a Riemannian metric on U (different from dot product). Show that,
for any compact subset K in U , there are positive constants C1, C2 > 0 such that the
inequalities

C1(v · v) ≤ gp(v, v) ≤ C2(v · v)

hold for all p ∈ K and all v ∈ TpU . (The constants C1, C2 may depend on the choice of
compact subset K).

Furthermore, formulate and prove an analogous inequality for the lengths of paths in K.
Hint: Regard (p, v) 7→ gp(v, v) as a function on the set of unit vectors with respect to

ordinary dot product in tangent bundle of U ,

T1U = {(p, v) | p ∈ U, v ∈ TpU, v · v = 1},

and use the fact that a continuous positive function on a compact set is bounded away from
0 and ∞.

Alternative Hint: In terms of the coordinates (x1, . . . , xn) in U ⊂ Rn, the metric g has
the representation

gp =
n∑

i,j=1

gij(p) dx
i ⊗ dxj .

The matrix G(p) = (gij(p))
n
i,j=1 is a positive-definite symmetric matrix (in the sense of

“ordinary” linear algebra) at each point p ∈ U . Show that we can take C1 = λmin and
C2 = λmax, where λmin is the minimal eigenvalue of G(p) as p ranges over the compact set
K, and λmax is similarly the maximal eigenvalue of G(p).

(2) Let distg : M ×M → R be the Riemannian distance function. Complete the proof that
distg defines a metric space structure by showing that distg(p, q) = 0 =⇒ p = q. Hint:
use Problem 1.

(3) Define the open g-ball with center p ∈M and radius r > 0 as

Bg(p, r) = {q ∈M | distg(p, q) < r}.

Since distg is a metric, these sets form a basis for a topology: Call a set g-open if it is equal
to a union of open g-balls. Show that the notion of g-open sets is redundant: a set is g-open
iff it is open in the original underlying topology of M .
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Hint: Reduce to showing that each open g-ball is open, and that each open set contains
an open g-ball around each of its points. For these statements, use local coordinates and
Problem 1.

(4) Let H = {(x, y) ∈ R2 | y > 0} denote the upper half plane. We give this space the metric

g =
dx⊗ dx+ dy ⊗ dy

y2

Calculate the Levi-Civita connection for this Riemannian manifold.
(5) Let g be a Riemannian metric on R. Calculate the Christoffel symbol of the Levi-Civita

connection of (R, g). Prove that (R, g) is isometric to an interval ⊂ R equipped with the
standard Euclidean metric. In fact we can take I to be either (0, L) for some L > 0, (0,∞),
or R itself. Hint: Write down a differential equation that the isometry must satisfy.

(6) Now let g be a Riemannian metric on an open set U ⊂ R2. We ask, is (U, g) isometric
to any open set in the standard Euclidean space R2? Show that the resulting system of
partial differential equations for the isometry is overdetermined (there are more equations
than unknown functions). This suggests already that the general answer is “no,” because
this system of PDE could be inconsistent. Find a particular case where the system is
inconsistent. (A system of partial differential equations is inconsistent if the equations
imply 0 = 1. An example is the system

∂f

∂x
= 0,

∂f

∂y
= x

for a function f(x, y). Compare the y derivative of the first equation with the x derivative
of the second equation.)


