DIFFERENTIABLE MANIFOLDS II: HOMEWORK 3

JAMES PASCALEFF

(1) Tensoriality: Let E_{1}, \ldots, E_{k}, F be smooth vector bundles over a smooth manifold M. Any section ω of $E_{1}^{\vee} \otimes \cdots \otimes E_{k}^{\vee} \otimes F$ determines a map

$$
\Omega: \Gamma\left(M, E_{1}\right) \times \cdots \times \Gamma\left(M, E_{k}\right) \rightarrow \Gamma(M, F),
$$

where $\Omega\left(s_{1}, \ldots, s_{k}\right)$ is defined by evaluating the E_{i}^{\vee} component of ω on s_{i}. Any function Ω so obtained is tensorial, meaning that it is $C^{\infty}(M)$-linear in each input. Prove that the correspondence between such sections ω and such tensorial functions Ω is a bijection.
(2) A connection $\nabla: \mathfrak{X}(M) \otimes \Gamma(M, E) \rightarrow \Gamma(M, E)$ is, by definition, tensorial $\left(C^{\infty}(M)\right.$-linear) in the vector field input $X \in \mathfrak{X}(M)=\Gamma(M, T M)$. Show that, for $x_{0} \in M$, the covariant derivative $\left(\nabla_{X} s\right)\left(x_{0}\right)$ depends only on $X\left(x_{0}\right)$. Show that the connection may be reinterpreted as a map

$$
\nabla: \Gamma(M, E) \rightarrow \Gamma\left(M, T^{*} M \otimes E\right)
$$

When interpreted this way, show that the Leibniz rule becomes

$$
\nabla(f s)=d f \otimes s+f \nabla s
$$

(3) Show that every vector bundle over a (second-countable Hausdorff) manifold admits a connection. The idea is to use local trivializations to get local connections, and then use a partition of unity to interpolate between them. Beware that the sum of two connections is not a connection!
(4) Consider the n-th order ordinary differential equation

$$
y^{(n)}=f\left(t, y, y^{\prime}, y^{\prime \prime}, \ldots, y^{(n-1)}\right)
$$

where t is the independent variable, $y(t)$ is a real-valued function, and f is a smooth function of all arguments. There is a standard trick that reduces a n-th order equation to a firstorder system of n equations: introduce new independent variables y_{i} corresponding to $y^{(i)}$ and impose the equations $y_{i}=y_{i-1}^{\prime}$.

Using this trick, show that the ODE equation corresponds to a connection in the sense of horizontal distribution on the bundle $\mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$; the base \mathbb{R} factor corresponds to t and the fiber \mathbb{R}^{n} corresponds to $\left(y, y^{\prime}, \ldots, y^{(n-1)}\right)$. Again, solutions should correspond to horizontal sections.

For the second part, suppose that the original ODE is linear in the conventional sense:

$$
y^{(n)}=p_{0}(t) y+p_{1}(t) y^{\prime}+\cdots+p_{n-1}(t) y^{(n-1)}
$$

Show that this equation also corresponds to a connection in the sense of covariant derivative in the vector bundle $\mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$. That is, find a covariant derivative ∇ on this bundle such that solutions of the ODE correspond to solutions of

$$
\nabla_{\frac{\partial}{\partial t}} s=0
$$

