DIFFERENTIABLE MANIFOLDS II: HOMEWORK 10

JAMES PASCALEFF

- (1) Let n = 3 and consider submanifolds V(f) in \mathbb{CP}^3 defined by the equation $f(x_0, x_1, x_2, x_3) = 0$, where f is a homogeneous polynomial of degree d. Assuming it is smooth, the manifold V(f) has complex dimension two and is therefore known as a complex surface. Find the Chern classes and Euler characteristic in the cases d = 2, 3, 4 (known as quadric, cubic, and quartic surfaces respectively).
- (2) Again let n = 3 and consider submanifolds $V(f_1, f_2)$ in \mathbb{CP}^3 defined two equations $f_1 = f_2 = 0$, where f_1 and f_2 are homogeneous polynomials of degrees d_1 and d_2 . Since $V(f_1, f_2)$ has complex dimension one it is called complex curve (also a Riemann surface). Find the chern classes of $V(f_1, f_2)$ as a function of d_1 and d_2 . Using the fact that the integral of $h \in H^2(\mathbb{CP}^3)$ over $V(f_1, f_2)$ is $d_1 \cdot d_2$, find the Euler characteristic and genus of $V(f_1, f_2)$.