DIFFERENTIABLE MANIFOLDS II: HOMEWORK 1

JAMES PASCALEFF

(1) It is possible to present a vector bundle by providing only the local trivializations and transition maps between them, without positing the existence of a total space a priori.

Let $\left\{U_{\alpha}\right\}_{\alpha \in A}$ be an open covering of a smooth manifold X. For each ordered pair of indices (α, β), assume given $A_{\alpha \beta}$ a smooth map

$$
A_{\alpha \beta}: U_{\alpha} \cap U_{\beta} \rightarrow \mathrm{GL}(k, \mathbb{R})
$$

Assume that

$$
A_{\alpha \alpha}(x)=I
$$

for all $x \in U_{\alpha}$, where I denotes the identity matrix in $\operatorname{GL}(k, \mathbb{R})$; also assume the cocycle condition

$$
A_{\beta \gamma}(x) \cdot A_{\alpha \beta}(x)=A_{\alpha \gamma}(x)
$$

for all $x \in U_{\alpha} \cap U_{\beta} \cap U_{\gamma}$.
Define a space E as the identification space

$$
E=\bigcup_{\alpha \in A}\{\alpha\} \times U_{\alpha} \times \mathbb{R}^{k} / \sim
$$

Where \sim is the relation $(\alpha, x, v) \sim(\beta, y, w)$ iff $x=y$ as elements of X (meaning in particular that U_{α} and U_{β} have nonempty intersection) and $w=A_{\alpha \beta}(x) v$.
(a) Prove that \sim is actually an equivalence relation.
(b) Show that E is a smooth manifold and construct a smooth map $\pi: E \rightarrow X$ making E into vector bundle over X.
(2) Use the preceding problem to give a construction of the tangent bundle "from scratch." Assume that X has a covering by open sets $\left\{U_{\alpha}\right\}_{\alpha \in A}$, each with a coordinate chart ψ_{α} : $U_{\alpha} \rightarrow V_{\alpha}$, where $V_{\alpha} \subset \mathbb{R}^{n}$ is an open set.
(a) Write a precise expression for what should be the transition matrix

$$
A_{\alpha \beta}: U_{\alpha} \cap U_{\beta} \rightarrow \operatorname{GL}(n, \mathbb{R})
$$

of the tangent bundle, in terms of the maps ψ_{α}. (Think about how vector fields transform under changes of coordinates.)
(b) Why is the cocycle condition satisfied?
(3) Let $\epsilon: S^{1} \times \mathbb{R} \rightarrow S^{1}$ denote the trivial rank 1 bundle over S^{1}. Let $\mu: E \rightarrow S^{1}$ denote the Möbius bundle constructed in the lecture.
(a) Show that sections of ϵ correspond to periodic functions:

$$
f: \mathbb{R} \rightarrow \mathbb{R}, \quad f(\theta+2 \pi)=f(\theta)
$$

(b) Show that sections of μ correspond to antiperiodic functions:

$$
g: \mathbb{R} \rightarrow \mathbb{R}, \quad g(\theta+2 \pi)=-g(\theta)
$$

(c) Show that any section of μ must vanish at some point. (That is, for any section s, there is $x \in S^{1}$ such that $\left.s(x)=0 \in \mu^{-1}(x)\right)$.
(d) Deduce that ϵ and μ are not isomorphic vector bundles over S^{1}.
(4) The real projective space \mathbb{R}^{n} is defined as the set of lines through the origin in \mathbb{R}^{n+1} :

$$
\mathbb{R P}^{n}=\left\{\ell \mid \ell \subset \mathbb{R}^{n+1} \text { is a one-dimensional subspace }\right\}
$$

This set may be given a topology and a manifold structure. The idea is that if two lines are "close" then one is the graph of a linear function on the other.

For a fixed $\ell_{0} \in \mathbb{R P}^{n}$, let ℓ_{0}^{\perp} denote the orthogonal complement with respect to the standard dot product, and let $\operatorname{Hom}\left(\ell_{0}, \ell_{0}^{\frac{1}{0}}\right)$ denote the space of linear maps between these vector spaces. Define a local parametrization (the inverse of a local coordinate chart) by

$$
\operatorname{Hom}\left(\ell_{0}, \ell_{0}^{\perp}\right) \rightarrow \mathbb{R P}^{n}, \quad f \mapsto\left\{v+f(v) \mid v \in \ell_{0}\right\}
$$

Show that these parametrizations are injective, and that there is a smooth manifold structure on $\mathbb{R} \mathbb{P}^{n}$ such that the inverses of the parametrizations are charts.

There is a natural line bundle on $\mathbb{R P}^{n}$ coming from the way it is constructed. Define $L \subset \mathbb{R} \mathbb{P}^{n} \times \mathbb{R}^{n+1}$

$$
L=\{(\ell, v) \mid v \in \ell\}
$$

That is, L is the "incidence correspondence," the set of pairs of a line and a vector in that line. Show that L is a smooth submanifold of $\mathbb{R} \mathbb{P}^{n} \times \mathbb{R}^{n+1}$. Let $\tau: L \rightarrow \mathbb{R} \mathbb{P}^{n}$ denote the projection onto the first factor. Show that τ is a rank 1 vector bundle. It is known as the tautological line bundle over projective space.

Some optional fun things to do with this:
(a) Show that when $n=1, \mathbb{R P}^{1}$ is diffeomorphic to S^{1}, and τ is isomorphic to the Möbius bundle μ.
(b) Let $v_{0} \in \mathbb{R}^{n+1}$ be a vector. Show that, by orthogonally projecting v_{0} onto all lines, we may construct a section of τ. On what locus does this section vanish?
(c) There is another projection $\pi: L \rightarrow \mathbb{R}^{n+1}$. What are the fibers of this map?
(d) Compare this construction of projective space with another one you might know: the quotient of the unit sphere $S^{n} \subset \mathbb{R}^{n+1}$ by the antipodal map $x \mapsto-x$.

