MATH 285 E1/F1 GRADED HOMEWORK SET 7 DUE MONDAY DECEMBER 8 IN LECTURE

This time, the homework has just one part. Please staple your homework together, and put your name and section on it. Thank you!
(1) (15 points) Find the solution of following wave problem for vibrations in a string of length 10 (corresponding to a struck string).

$$
\left\{\begin{array}{l}
\frac{\partial^{2} u}{\partial t^{2}}=16 \frac{\partial^{2} u}{\partial x^{2}} \\
u(0, t)=0 \\
u(10, t)=0 \\
u(x, 0)=0 \\
\frac{\partial u}{\partial t}(x, 0)=x(10-x)
\end{array}\right.
$$

Although this problem was essentially done in lecture for general initial conditions, we will recall the solution. The separable solutions $u(x, t)=X(x) T(t)$ of the wave equation and the boundary conditions satisfy

$$
\begin{gathered}
\frac{d^{2} X}{d x^{2}}+\lambda X=0, \quad X(0)=0, \quad X(10)=0 \\
\frac{d^{2} T}{d t^{2}}+c^{2} \lambda T=0
\end{gathered}
$$

We recognize the conditions on X as an eigenvalue problem, with eigenvalues $\lambda_{n}=(n \pi / 10)^{2}$ and eigenfunctions $X_{n}(x)=\sin (n \pi x / 10)$ where $n=1,2,3, \ldots$ ranges over the positive integers. The corresponding T_{n} solves

$$
\frac{d^{2} T_{n}}{d t^{2}}+c^{2}(n \pi / 10)^{2} T_{n}=0
$$

whence

$$
T_{n}(t)=A_{n} \cos (c n \pi t / 10)+B_{n} \sin (c n \pi t / 10)
$$

The separable solutions are

$$
u_{n}(x, t)=\left[A_{n} \cos (c n \pi t / 10)+B_{n} \sin (c n \pi t / 10)\right] \sin (n \pi x / 10)
$$

and the general solution is
$u(x, t)=\sum_{n=1}^{\infty}\left[A_{n} \cos (c n \pi t / 10)+B_{n} \sin (c n \pi t / 10)\right] \sin (n \pi x / 10)$

Now to apply the initial conditions. Plugging $t=0$ into the general solution:

$$
u(x, 0)=\sum_{n=1} A_{n} \sin (n \pi x / 10)
$$

The initial condition says that this ought to be zero, so we conclude that all A_{n} are zero. Thus

$$
u(x, t)=\sum_{n=1}^{\infty} B_{n} \sin (c n \pi t / 10) \sin (n \pi x / 10)
$$

where have yet to determine B_{n}. Differentiate with respect to t :

$$
\frac{\partial u}{\partial t}(x, t)=\sum_{n=1}^{\infty} B_{n} \frac{c n \pi}{10} \cos (c n \pi t / 10) \sin (n \pi x / 10)
$$

Plugging in $t=0$ makes the cosine factors become 1 , and we get something that looks like a sine series:

$$
\frac{\partial u}{\partial t}(x, 0)=\sum_{n=1}^{\infty} B_{n} \frac{c n \pi}{10} \sin (n \pi x / 10)
$$

The initial condition says that this ought to equal $x(10-x)$. So we need to find the sine series of this function on the interval $0<x<10$. Thus we must compute

$$
b_{n}=\frac{2}{10} \int_{0}^{10} x(10-x) \sin (n \pi x / 10) d x
$$

This can be done directly by repeated integration by parts. The result is

$$
b_{n}=\frac{400}{(n \pi)^{3}}(1-\cos n \pi)= \begin{cases}\frac{800}{(n \pi)^{3}} & n \text { is odd } \\ 0 & n \text { is even }\end{cases}
$$

We have the relation

$$
B_{n} \frac{c n \pi}{10}=b_{n}
$$

so

$$
B_{n}= \begin{cases}\frac{8000}{c(n \pi)^{4}} & n \text { is odd } \\ 0 & n \text { is even }\end{cases}
$$

Noting that actually $c=4$ (which could have been put in earlier if desired):

$$
u(x, t)=\sum_{n \text { odd }} \frac{2000}{(n \pi)^{4}} \sin (4 n \pi t / 10) \sin (n \pi x / 10)
$$

(2) (5 points) The function

$$
u(x, t)=\sin (20 t) \cos (5 x)
$$

solves a wave equation. Write $u(x, t)$ as a sum of a right-moving wave and a left-moving wave, and determine the speed of these waves. Hint: Scour the article 'List of trigonometric identities' on Wikipedia for a relevant identity.

The relevant identity is what is called the product-to-sum formula

$$
\sin A \cos B=\frac{1}{2}[\sin (A+B)+\sin (A-B)]
$$

Thus
$u(x, t)=\sin (20 t) \cos (5 x)=\frac{1}{2} \sin (20 t+5 x)+\frac{1}{2} \sin (20 t-5 x)$
We would like to see expressions like $x-c t$ and $x+c t$ inside the sines, so we factor out the 5 , and use the fact that $\sin (-z)=-\sin z$:

$$
u(x, t)=\frac{1}{2} \sin (5(x+4 t))-\frac{1}{2} \sin (5(x-4 t))
$$

Thus if we define $F(z)=\frac{1}{2} \sin 5 z$, we find

$$
u(x, t)=F(x+4 t)-F(x-4 t)
$$

The term $F(x+4 t)=\frac{1}{2} \sin (5(x+4 t))$ is a left-moving wave with speed $c=4$, and the term $-F(x-4 t)=-\frac{1}{2} \sin (5(x-4 t))$ is a right-moving wave with speed 4.
(3) (15 points) Find the solution of the Laplace equation problem on the square $0 \leq x \leq 1,0 \leq y \leq 1$.

$$
\left\{\begin{array}{l}
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 \\
u(x, 0)=1 \\
u(x, 1)=0 \\
u(0, y)=0 \\
u(1, y)=0
\end{array}\right.
$$

Taking into account Laplace's equation and the homogeneous boundary conditions, we find that the separable solutions $u(x, y)=X(x) Y(y)$ satisfy

$$
\begin{gathered}
\frac{d^{2} X}{d x^{2}}+\lambda X=0, \quad X(0)=0, \quad X(1)=0 \\
\frac{d^{2} Y}{d y^{2}}-\lambda Y=0, \quad Y(1)=0
\end{gathered}
$$

The set of conditions on X is an eigenvalue problem, with solutions $\lambda_{n}=(n \pi)^{2}, X_{n}(x)=\sin n \pi x$, where $n=1,2,3, \ldots$ The corresponding function $Y_{n}(y)$ must satisfy

$$
\frac{d^{2} Y_{n}}{d y^{2}}-(n \pi)^{2} Y_{n}=0
$$

So

$$
Y_{n}(y)=A e^{n \pi y}+B e^{-n \pi y}
$$

The condition $Y_{n}(1)=0$ means

$$
0=A e^{n \pi}+B e^{-n \pi}
$$

So we can write $B=-A e^{2 n \pi}$, and thus

$$
Y_{n}(y)=A e^{n \pi y}-A e^{2 n \pi} e^{-n \pi y}=A\left(e^{n \pi y}-e^{n \pi(2-y)}\right)
$$

This is actually good enough to work with, but it can also be written in terms of sinh. Let's factor out a factor of $e^{n \pi}$:
$Y_{n}(y)=A e^{n \pi}\left(e^{n \pi(y-1)}-e^{n \pi(1-y)}\right)=-2 A e^{n \pi} \sinh [n \pi(1-y)]$
Since $-2 A e^{n \pi}$ is just a constant, we can take

$$
u_{n}(x, y)=\sinh [n \pi(1-y)] \sin n \pi x
$$

as our basic separable solution. The general solution to Laplace's equation and the three homogeneous boundary conditions is therefore

$$
u(x, y)=\sum_{n=1}^{\infty} c_{n} \sinh [n \pi(1-y)] \sin n \pi x
$$

Last is to satisfy the condition $u(x, 0)=1$. Plugging in $y=0$, we get

$$
u(x, 0)=\sum_{n=1}^{\infty} c_{n} \sinh n \pi \sin n \pi x
$$

which has the form of a sine series with $L=1$. Thus we need to take the sine series of 1 on the interval $0<x<1$, the coefficients are given by
$b_{n}=\frac{2}{1} \int_{0}^{1} 1 \sin n \pi x d x=\frac{2}{n \pi}(1-\cos n \pi)= \begin{cases}\frac{4}{n \pi} & n \text { is odd } \\ 0 & n \text { is even }\end{cases}$
These coefficients are related to c_{n} by

$$
c_{n} \sinh n \pi=b_{n}
$$

Thus

$$
c_{n}= \begin{cases}\frac{4}{n \pi \sinh n \pi} & n \text { is odd } \\ 0 & n \text { is even }\end{cases}
$$

We conclude

$$
u(x, y)=\sum_{n \text { odd }} \frac{4}{n \pi} \frac{\sinh [n \pi(1-y)]}{\sinh n \pi} \sin n \pi x
$$

