MATH 285 E1/F1 GRADED HOMEWORK SET 6 DUE FRIDAY NOVEMBER 21 IN LECTURE

This time, the homework has just one part. Please staple your homework together, and put your name and section on it. Thank you!
(1) (15 points) Consider the eigenvalue problem

$$
\left\{\begin{array}{l}
y^{\prime \prime}+2 y^{\prime}+\lambda y=0 \\
y(0)=0 \\
y(1)=0
\end{array}\right.
$$

Find the eigenvalues and eigenfunctions for this problem. That is, find the values of λ for which the problem has a nontrivial solution, and find those nontrivial solutions. Hint: The smallest eigenvalue is $\pi^{2}+1$, with associated eigenfunction $e^{-x} \sin \pi x$. (In your answer you should verify this.)
(2) (10 points) Find the solution of the heat problem on the interval $0 \leq x \leq 5$:

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}=2 \frac{\partial^{2} u}{\partial x^{2}} \\
\frac{\partial u}{\partial x}(0, t)=0 \\
\frac{\partial u}{\partial x}(5, t)=0 \\
u(x, 0)=\cos ^{2} 10 \pi x
\end{array}\right.
$$

(3) (15 points) Find the solution of the heat problem on the interval $0 \leq x \leq 1$:

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}=5 \frac{\partial^{2} u}{\partial x^{2}} \\
u(0, t)=0 \\
u(1, t)=1 \\
u(x, 0)=x^{2}
\end{array}\right.
$$

You should use the following strategy:
(a) Find a steady-state solution u_{0} of all parts of the problem except the initial condition. That is, find a function $u_{0}(x, t)$ that is constant in time $\left(\frac{\partial u}{\partial t}=0\right)$, that satisfies the heat equation, and that satisfies the conditions $u_{0}(0, t)=0$ and $u_{0}(1, t)=1$.
(b) Posit $w=u-u_{0}$, and show that w must solve a slighty different heat problem:

$$
\left\{\begin{array}{l}
\frac{\partial w}{\partial t}=5 \frac{\partial^{2} w}{\partial x^{2}} \\
w(0, t)=0 \\
w(1, t)=0 \\
w(x, 0)=x^{2}-u_{0}(x, 0)
\end{array}\right.
$$

(w is called the transient term).
(c) Using the methods described in the lectures, find the solution $w(x, t)$, and hence $u(x, t)$.

