MATH 285 E1/F1 GRADED HOMEWORK SET 6 DUE FRIDAY NOVEMBER 21 IN LECTURE

This time, the homework has just one part. Please staple your homework together, and put your name and section on it. Thank you!
(1) (15 points) Consider the eigenvalue problem

$$
\left\{\begin{array}{l}
y^{\prime \prime}+2 y^{\prime}+\lambda y=0 \\
y(0)=0 \\
y(1)=0
\end{array}\right.
$$

Find the eigenvalues and eigenfunctions for this problem. That is, find the values of λ for which the problem has a nontrivial solution, and find those nontrivial solutions. Hint: The smallest eigenvalue is $\pi^{2}+1$, with associated eigenfunction $e^{-x} \sin \pi x$. (In your answer you should verify this.)

Considering first the differential equation, the corresponding characteristic equation is

$$
r^{2}+2 r+\lambda=0
$$

with solutions

$$
r=\frac{-2 \pm \sqrt{4-4 \lambda}}{2}=-1 \pm \sqrt{1-\lambda}
$$

Thus the nature of the solutions depends on whether $1-\lambda>0$, $1-\lambda=0$, or $1-\lambda<0$.

First consider the case $1-\lambda>0$. Then the function y has the form

$$
y=A e^{(-1+\sqrt{1-\lambda}) x}+B e^{(-1-\sqrt{1-\lambda}) x}
$$

We ask what restriction the endpoint conditions place on A and B :

$$
\begin{gathered}
y(0)=0 \Longrightarrow 0=A+B \\
y(1)=0 \Longrightarrow 0=A e^{-1+\sqrt{1-\lambda}}+B e^{-1-\sqrt{1-\lambda}}
\end{gathered}
$$

If we multiply the latter equation by $e^{1+\sqrt{1-\lambda}}$, we obtain

$$
0=A e^{2 \sqrt{1-\lambda}}+B
$$

In conjunction with $0=A+B$, we obtain $A=A e^{2 \sqrt{1-\lambda}}$. This can only happen if $A=0$. But then $B=0$ as well. Thus the only solution is $y=0$, the trivial/uninteresting solution. We conclude that λ is not an eigenvalue.

Now we consider the case $1-\lambda=0$, which is to say $\lambda=1$. The characteristic roots $r=-1 \pm \sqrt{1-\lambda}$ are both equal to -1 , so we have a repeated root. Then the function y has the form

$$
y=A e^{-x}+B x e^{-x}
$$

Considering the endpoint conditions:

$$
\begin{gathered}
y(0)=0 \Longrightarrow 0=A \\
y(1)=0 \Longrightarrow 0=A e^{-1}+B e^{-1}
\end{gathered}
$$

Thus we find directly $A=0$, and hence $0=B e^{-1}$, so $B=0$ as well. Thus the only solution is $y=0$, and we conclude that λ is not an eigenvalue.

Lastly, we consider the case $1-\lambda<0$. Since now $\lambda-1$ is a positive number, the characteristic roots may be written:

$$
r=-1 \pm \sqrt{1-\lambda}=-1 \pm i \sqrt{\lambda-1}
$$

Then the function y has the form

$$
y=A e^{-x} \cos \sqrt{\lambda-1} x+B e^{-x} \sin \sqrt{\lambda-1} x
$$

Considering the endpoint conditions:

$$
\begin{gathered}
y(0)=0 \Longrightarrow 0=A \\
y(1)=0 \Longrightarrow 0=A e^{-x} \cos \sqrt{\lambda-1}+B e^{-1} \sin \sqrt{\lambda-1}
\end{gathered}
$$

The first equation gives directly that $A=0$, so the second one simplifies to

$$
0=B e^{-1} \sin \sqrt{\lambda-1}
$$

The number e^{-1} is not zero, so this equation implies that either $B=0$ or $\sin \sqrt{\lambda-1}=0$.

Now we have two subcases, either $\sin \sqrt{\lambda-1}=0$ or not. If not, then $B=0$, so the entire solution $y=0$, and we conclude that λ is not an eigenvalue. But, if the number λ does satisfy the condition

$$
\sin \sqrt{\lambda-1}=0
$$

then B can take any value, and we have an nontrivial/interesting solution, namely $y=B e^{-x} \sin \sqrt{\lambda-1} x$, so λ is an eigenvalue.

Thus the condition for λ to be an eigenvalue is

$$
\sin \sqrt{\lambda-1}=0
$$

This is equivalent to

$$
\begin{aligned}
& \sqrt{\lambda-1}=n \pi, \quad n=1,2,3, \ldots \\
& \lambda=(n \pi)^{2}+1, \quad n=1,2,3, \ldots
\end{aligned}
$$

The eigenfunction associated to the eigenvalue $(n \pi)^{2}+1$ is

$$
y=e^{-x} \sin n \pi x
$$

(2) (10 points) Find the solution of the heat problem on the interval $0 \leq x \leq 5:$

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}=2 \frac{\partial^{2} u}{\partial x^{2}} \\
\frac{\partial u}{\partial x}(0, t)=0 \\
\frac{\partial u}{\partial x}(5, t)=0 \\
u(x, 0)=\cos ^{2} 10 \pi x
\end{array}\right.
$$

This is the heat equation problem with insulated ends, which was discussed in lecture (see lecture 33). It corresponds to the case $k=2$ and $L=5$. We quote from that lecture: the eigenfunctions are the constant function 1 and the cosine functions $\cos \frac{n \pi x}{5}$. The separable solutions are $u_{n}(x, t)=e^{-2(n \pi / 5)^{2} t} \cos \frac{n \pi x}{5}$. The general solutions is

$$
u(x, t)=c_{0}+\sum_{n=1}^{\infty} c_{n} e^{-2(n \pi / 5)^{2} t} \cos \frac{n \pi x}{5}
$$

with initial value

$$
u(x, 0)=c_{0}+\sum_{n=1}^{\infty} c_{n} \cos \frac{n \pi x}{5}
$$

We need this to match $f(x)=\cos ^{2} 10 \pi x$, so we need to find the Fourier cosine series (with period 10, L=5) of $f(x)$. That can be done by using the double angle formula $\cos 2 \theta=2 \cos ^{2} \theta-1$, or $\cos ^{2} \theta=(1+\cos 2 \theta) / 2$

$$
f(x)=\cos ^{2} 10 \pi x=(1+\cos 20 \pi x) / 2=\frac{1}{2}+\frac{1}{2} \cos \frac{100 \pi x}{5}
$$

Thus, in order to match the initial data, we must take $c_{0}=1 / 2$, $c_{100}=1 / 2$, and all other coefficients zero

$$
c_{0}=1 / 2, c_{1}=0, c_{2}=0, \ldots, c_{99}=0, c_{100}=1 / 2, c_{101}=0, \ldots
$$

Putting it all together, the solution is

$$
u(x, t)=\frac{1}{2}+\frac{1}{2} e^{-2(100 \pi / 5)^{2} t} \cos \frac{100 \pi x}{5}
$$

or, simplified:

$$
u(x, t)=\frac{1}{2}+\frac{1}{2} e^{-800 \pi^{2} t} \cos 20 \pi x
$$

(3) (15 points) Find the solution of the heat problem on the interval $0 \leq x \leq 1$:

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}=5 \frac{\partial^{2} u}{\partial x^{2}} \\
u(0, t)=0 \\
u(1, t)=1 \\
u(x, 0)=x^{2}
\end{array}\right.
$$

You should use the following strategy:
(a) Find a steady-state solution u_{0} of all parts of the problem except the initial condition. That is, find a function $u_{0}(x, t)$ that is constant in time $\left(\frac{\partial u}{\partial t}=0\right)$, that satisfies the heat equation, and that satisfies the conditions $u_{0}(0, t)=0$ and $u_{0}(1, t)=1$.
Assuming $\frac{\partial u_{0}}{\partial t}=0$ and the heat equation, we obtain $\frac{\partial^{2} u_{0}}{\partial x^{2}}=0$, so $u_{0}(x, t)$ must be independent of t and linear in x

$$
u_{0}(x, t)=A x+B
$$

In order to satisfy the boundary conditions, we must have $0=$ $u_{0}(0, t)=B$, and $1=u_{0}(1, t)=A+B$, hence $B=0$ and $A=1$. Thus the steady state solution is

$$
u_{0}(x, t)=x
$$

(b) Posit $w=u-u_{0}$, and show that w must solve a slighty different heat problem:

$$
\left\{\begin{array}{l}
\frac{\partial w}{\partial t}=5 \frac{\partial^{2} w}{\partial x^{2}} \\
w(0, t)=0 \\
w(1, t)=0 \\
w(x, 0)=x^{2}-u_{0}(x, 0)
\end{array}\right.
$$

(w is called the transient term).
We are assuming that $u(x, t)$ solves the problem, and we want to determine the relevant condtions on $w(x, t)$. First of all, w satisfies the heat equation:

$$
\frac{\partial w}{\partial t}=\frac{\partial}{\partial t}\left(u-u_{0}\right)=\frac{\partial u}{\partial t}-\frac{\partial u_{0}}{\partial t}=5 \frac{\partial^{2} u}{\partial x^{2}}-5 \frac{\partial^{2} u_{0}}{\partial x^{2}}=5 \frac{\partial^{2}}{\partial x^{2}}\left(u-u_{0}\right)=5 \frac{\partial^{2} w}{\partial x^{2}}
$$

Next, w satisfies $w(0, t)=0$:

$$
w(0, t)=u(0, t)-u_{0}(0, t)=0-0=0
$$

Next, w satisfies $w(1, t)=0$:

$$
w(1, t)=u(1, t)-u_{0}(1, t)=1-1=0
$$

Lastly, w satisfies $w(x, 0)=x^{2}-u_{0}(x, 0)$:

$$
w(x, 0)=u(x, 0)-u_{0}(x, 0)=x^{2}-u_{0}(x, 0)
$$

(c) Using the methods described in the lectures, find the solution $w(x, t)$, and hence $u(x, t)$.
Using the steady state solution $u_{0}(x, 0)=x$, we need to solve the heat problem

$$
\left\{\begin{array}{l}
\frac{\partial w}{\partial t}=5 \frac{\partial^{2} w}{\partial x^{2}} \\
w(0, t)=0 \\
w(1, t)=0 \\
w(x, 0)=x^{2}-x
\end{array}\right.
$$

We now quote from lecture 32 on this problem, with $k=5$ and $L=1$: the general solution is a the series

$$
w(x, t)=\sum_{n=1}^{\infty} c_{n} e^{-5(n \pi)^{2} t} \sin n \pi x
$$

and

$$
w(x, 0)=\sum_{n=1}^{\infty} c_{n} \sin n \pi x
$$

So we need to compute the Fourier sine coefficients of $x^{2}-x$. These are

$$
b_{n}=2 \int_{0}^{1}\left(x^{2}-x\right) \sin n \pi x d x
$$

We use integration by parts twice

$$
\begin{aligned}
b_{n} & =2\left[\left(x^{2}-x\right)(-1 / n \pi) \cos n \pi x\right]_{0}^{1}-2 \int_{0}^{1}(2 x-1)(-1 / n \pi) \cos n \pi x d x \\
& =2[0-0]+(2 / n \pi) \int_{0}^{1}(2 x-1) \cos n \pi x d x \\
& =(2 / n \pi)\left\{[(2 x-1)(1 / n \pi) \sin n \pi x]_{0}^{1}-\int_{0}^{1} 2(1 / n \pi) \sin n \pi x d x\right\} \\
& =(2 / n \pi)\left\{[0-0]+\left[2(1 / n \pi)^{2} \cos n \pi x\right]_{0}^{1}\right\} \\
& =\left(4 /(n \pi)^{3}\right)(\cos n \pi-1)=\left(4 /(n \pi)^{3}\right)\left((-1)^{n}-1\right)
\end{aligned}
$$

We can see that this expression is 0 if n is even, and equal to $-8 /(n \pi)^{3}$ if n is odd. Thus the Fourier sine series of $x^{2}-x$ on the interval $0<x<1$ is

$$
x^{2}-x=\sum_{n \text { odd }} \frac{-8}{(n \pi)^{3}} \sin n \pi x
$$

To get the solution of the heat equation we set $c_{n}=b_{n}$ in the general solution

$$
w(x, t)=\sum_{n \text { odd }} \frac{-8}{(n \pi)^{3}} e^{-5(n \pi)^{2} t} \sin n \pi x
$$

This is the solution for the w-problem. To get the solution the original problem for u, we add back $u_{0}=x$:

$$
u(x, t)=u_{0}(x, t)+w(x, t)=x+\sum_{n \text { odd }} \frac{-8}{(n \pi)^{3}} e^{-5(n \pi)^{2} t} \sin n \pi x
$$

