MATH 285 E1/F1 GRADED HOMEWORK SET 5 DUE WEDNESDAY NOVEMBER 5 IN LECTURE

This time, the homework has just one part. Please staple your homework together, and put your name and section on it. Thank you!
(1) (15 points, from [1, p. 190]) Expand x^{3} and x in Fourier sine series valid when $-\pi<x<\pi$; and hence find the value of the sum of the series

$$
\sin x-\frac{1}{2^{3}} \sin 2 x+\frac{1}{3^{3}} \sin 3 x-\frac{1}{4^{3}} \sin 4 x+\cdots
$$

for all values of $x .{ }^{1}$
(2) (5 points) Find the Fourier cosine series of the function $f(t)=1-t$ defined on the interval $0<t<1$.
(3) (10 points) Let $f(t)$ be the periodic function of period 2 defined on the interval $0<t<2$ by the formula $f(t)=t^{2}$. The Fourier series of this function is

$$
\frac{4}{3}+\frac{4}{\pi^{2}} \sum_{n=1}^{\infty} \frac{1}{n^{2}} \cos n \pi t-\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \sin n \pi t
$$

(a) (5 points) Describe precisely the value of the sum of the Fourier series at every value of t, including at the points of discontinuity of the original function $f(t)$.
(b) (5 points) Suppose we differentiate the Fourier series term-byterm. Show that the resulting series does not converge (to anything, in particular not to $f^{\prime}(t)$). Hint: try to plug $t=1 / 2$ into the differentiated series.
(4) (5 points) Let $F(t)$ be the odd function of period 2π such that $F(t)=$ 1 for $0<t<\pi$ (this is a square wave). Consider the mass-spring system with $m=1, k=5$, subject to the driving force $F(t)$:

$$
\frac{d^{2} x}{d t^{2}}+5 x=F(t)
$$

Using Fourier series methods, find a steady periodic solution of this differential equation.

References

[1] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, fourth edition.

[^0]
[^0]: ${ }^{1}$ According to Whittaker and Watson [1], this problem was on an exam at Jesus College, Cambridge, in 1902.

