
MATH 285 E1/F1 GRADED HOMEWORK SET 5

DUE WEDNESDAY NOVEMBER 5 IN LECTURE

This time, the homework has just one part. Please staple your home-
work together, and put your name and section on it. Thank you!

(1) (15 points, from [1, p. 190]) Expand x3 and x in Fourier sine series
valid when −π < x < π; and hence find the value of the sum of the
series

sinx− 1

23
sin 2x+

1

33
sin 3x− 1

43
sin 4x+ · · ·

for all values of x.1

Since both x and x3 are odd functions, the constant term and all of
the cosine terms of their Fourier series vanish, so the Fourier series
contains only sine terms (as the problem statement says). Again
using the odd symmetry, the sine coefficients are computed by the
integrals

2

π

∫ π

0
x sinnx dx,

2

π

∫ π

0
x3 sinnx dx

Let’s consider the function x first (this was actually done in lec-
ture). We use integration by parts∫

x sinnx dx = −(1/n)x cosnx−
∫
−(1/n) cosnx dx

= −(1/n)x cosnx+ (1/n2) sinnx+ C

Plugging in the limits of integration 0 and π gives

bn =
2

π

∫ π

0
x sinnx dx

=
2

π
[−(1/n)π cosnπ + (1/n2) sinnπ + (1/n)0 cos 0− (1/n2) sin 0]

=
2

π
[−(1/n)π cosnπ] =

2

n
(−1)n+1

Thus, on the interval −π < x < π, we have the equality

x =
∞∑
n=1

bn sinnx = 2
∞∑
n=1

(−1)n+1

n
sinnx

1According to Whittaker and Watson [1], this problem was on an exam at Jesus College,
Cambridge, in 1902.
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2 GRADED HOMEWORK 5

Now let’s consider the function x3. We reuse the symbol bn to
denote the sine coefficients of x3. We need to integrate x3 sinnx,
and for this we use integration by parts recursively.∫

x3 sinnx dx = x3(−1/n) cosnx−
∫

3x2(−1/n) cosnx dx

= −(1/n)x3 cosnx+ (3/n)

∫
x2 cosnx dx

∫
x2 cosnx dx = x2(1/n) sinnx−

∫
2x(1/n) sinnx dx

= (1/n)x2 sinnx− (2/n)

∫
x sinnx dx∫

x sinnx dx = −(1/n)x cosnx+ (1/n2) sinnx+ C

Putting it together,∫
x3 sinnx dx

= −(1/n)x3 cosnx+ (3/n){(1/n)x2 sinnx− (2/n)[−(1/n)x cosnx+ (1/n2) sinnx]}+ C

Rather than multiplying this out, let’s just see what happens when
we plug in 0 and π. If we plug in 0, the the terms x3 cosnx, x2 sinnx,
x cosnx, and sinnx all become zero, so the whole expression is zero.
If we plug in π, the terms x2 sinnx and sinnx become zero, so we
are left with

− (1/n)π3 cosnπ + (3/n){−(2/n)[−(1/n)π cosnπ]}
= −(1/n)π3(−1)n + (6/n3)π(−1)n

Thus

bn =
2

π

∫ π

0
x3 sinnx dx =

2

π
[(−1)n+1(1/n)π3 + (−1)n(6/n3)π]

= (−1)n+1(2/n)π2 + (−1)n(12/n3)

Thus, for −π < x < π, we have

x3 =

∞∑
n=1

[(−1)n+1(2/n)π2 + (−1)n(12/n3)] sinnx

This completes the first part of the problem.
The second part is to find the sum of the given series. Call that

function f(x). We notice that this series may be written using
∑

notation as

f(x) =

∞∑
n=1

(−1)n+1(1/n3) sinnx
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The sine coefficients of x are Pn = (−1)n+1(2/n), those of x3 are
Qn = (−1)n+1(2/n)π2 + (−1)n(12/n3), and those of f(x) are Rn =
(−1)n+1(1/n3). There is a relationship between these coefficients

Qn = π2Pn − 12Rn

and thus a relationship between the corresponding functions

x3 = π2x− 12f(x)

Thus, for π < x < π

f(x) = (1/12)(π2x− x3)

The function f(x) repeats periodically with period 2π, and it is in
fact continuous.

(2) (5 points) Find the Fourier cosine series of the function f(t) = 1− t
defined on the interval 0 < t < 1.

Recall that the cosine series is defined by taking the Fourier se-
ries of the even extension of period 2L = 2. The Fourier cosine
coefficients are

a0 =
2

L

∫ L

0
f(t) dt = 2

∫ 1

0
(1− t) dt = 2[t− t2/2]10 = 2(1− 1/2) = 1

an =
2

L

∫ L

0
f(t) cos

nπt

L
dt = 2

∫ 1

0
(1− t) cosnπt dt

The integral is done by parts∫
(1− t) cosnπt dt = (1− t) 1

nπ
sinnπt−

∫
(−1)

1

nπ
sinnπt dt

=
1

nπ
(1− t) sinnπt− 1

(nπ)2
cosnπt+ C

an = 2

[
1

nπ
(1− t) sinnπt− 1

(nπ)2
cosnπt

]1
0

= 2

[
1

nπ
(1− 1) sinnπ − 1

(nπ)2
cosnπ − 1

nπ
(1− 0) sin 0 +

1

(nπ)2
cos 0

]
=

2

(nπ)2
[cos 0− cosnπ] =

2

(nπ)2
[1− (−1)n]

Thus an = 0 if n is even, and an = 4/(nπ)2 if n is odd.
The cosine series is then

f(t) =
a0
2

+
∞∑
n=1

an cosnπt =
1

2
+

4

π2

∑
n odd

1

n2
cosnπt
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(3) (10 points) Let f(t) be the periodic function of period 2 defined on
the interval 0 < t < 2 by the formula f(t) = t2. The Fourier series
of this function is

4

3
+

4

π2

∞∑
n=1

1

n2
cosnπt− 4

π

∞∑
n=1

1

n
sinnπt

(a) (5 points) Describe precisely the value of the sum of the Fourier
series at every value of t, including at the points of discontinuity
of the original function f(t).
The function f(t) is continuous except at the points t = 2k,
where k is an integer. At each such point, the limit from the
left is 22 = 4, while the limit from the right is 02 = 0. So the
Fourier series converges to (4 + 0)/2 = 2 at these points.
At any point t not of the form 2k, where k is an integer, the
Fourier series converges to s2, where s is the number in the
interval 0 < s < 2 obtained by adding a multiple of 2 to t. If
[x] denotes the greatest integer less than or equal to x, then
s = t− 2[t/2]. In other words,

4

3
+

4

π2

∞∑
n=1

1

n2
cosnπt− 4

π

∞∑
n=1

1

n
sinnπt =

{
2 t = 2k

(t− 2[t/2])2 t 6= 2k

(b) (5 points) Suppose we differentiate the Fourier series term-by-
term. Show that the resulting series does not converge (to any-
thing, in particular not to f ′(t)). Hint: try to plug t = 1/2 into
the differentiated series.
Taking the derivative term-by-term yields

4

π2

∞∑
n=1

1

n2
(−nπ) sinnπt− 4

π

∞∑
n=1

1

n
nπ cosnπt

=− 4

π

∞∑
n=1

[
1

n
sinnπt+ π cosnπt

]
To see whether this converges, we apply the test for divergence,
which says that if a series converges the terms must go to zero as
n→∞. The term (1/n) sinnπt does indeed go to zero, because
of the 1/n factor. But the term cosnπt generally does not. If
we plug in t = 1/2, we get the sequence cosnπ/2, which goes as
0,−1, 0, 1, 0,−1, 0, 1, . . . , and hence does not converge to zero.

(4) (5 points) Let F (t) be the odd function of period 2π such that F (t) =
1 for 0 < t < π (this is a square wave). Consider the mass-spring
system with m = 1, k = 5, subject to the driving force F (t):

d2x

dt2
+ 5x = F (t)
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Using Fourier series methods, find a steady periodic solution of this
differential equation.

As we have seen several times in class, the square wave of ampli-
tude 1 and period 2π is has a Fourier series

F (t) =
4

π

∑
n odd

1

n
sinnt

We expect a steady periodic solution of the form

xsp(t) = A0/2 +
∞∑
n=1

(An cosnt+Bn sinnt)

Plugging this into x′′ + 5x gives

x′′sp + 5xsp = 5A0/2 +

∞∑
n=1

(An[5− n2] cosnt+Bn[5− n2] sinnt)

In order for this to equal F (t), A0 and An must equal zero, since
F (t) has no constant term or cosine terms. Also, Bn must be zero
for n even, since F (t) has no even sine terms. Thus we find

Bn[5− n2] =
4

π

1

n
(n odd)

Bn =
4

π

1

n(5− n2)
(n odd)

Note that this works because 5 − n2 is never zero (
√

5 is not an
integer). The steady periodic solution is

xsp(t) =
4

π

∑
n odd

1

n(5− n2)
sinnt

References

[1] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, fourth edition.


