MATH 285 E1/F1 GRADED HOMEWORK SET 4 DUE FRIDAY OCTOBER 24 IN LECTURE

This time, the homework has just one part. Please staple your homework together, and put your name and section on it. Thank you!
(1) (10 points) Find the general solution of the differential equation

$$
(D-3) y=x e^{2 x}+e^{3 x}
$$

Hint: Use the annihilator method.
(2) (5 points) Consider the forced mass-spring oscillator with mass $m=$ 4, no damping $c=0$, and a spring constant k that is adjustable. Consider a driving forces that is the sum of two cosine functions

$$
F(t)=\cos 2 t+\cos 5 t
$$

The differential equation for the displacement $x(t)$ is then

$$
4 x^{\prime \prime}+k x=\cos 2 t+\cos 5 t
$$

For what values of k is it impossible to find a particular solution of the form $A \cos 2 t+B \cos 5 t$? (These are the values of k for which resonance occurs.)
(3) (5 points) Recall from the lecture the damped $(c>0)$ forced oscillator obeying the differential equation

$$
m x^{\prime \prime}+c x^{\prime}+k x=F_{0} \cos \omega t
$$

In the lecture, we derived a particular solution of this equation

$$
x_{p}(t)=C \cos (\omega t-\alpha),
$$

where

$$
C=\frac{F_{0}}{\sqrt{\left(k-m \omega^{2}\right)^{2}+(c \omega)^{2}}}, \quad \tan \alpha=\frac{c \omega}{k-m \omega^{2}} .
$$

Here is something we did not talk about in the lecture: the solution $x_{p}(t)$ is called the steady-state solution, because any solution will asymptotically converge to it as $t \rightarrow \infty$. More precisely, if $x_{1}(t)$ is any solution of the same nonhomogeneous equation, then

$$
\lim _{t \rightarrow \infty}\left[x_{1}(t)-x_{p}(t)\right]=0 .
$$

Explain why this is true. You should use the description of the solutions of the homogeneous equation $m x^{\prime \prime}+c x^{\prime}+k x=0$ on page 191 of the textbook. Hint: It is very important that $c>0$.
(4) (5 points) Use the orthogonality properties of sine and cosine to compute the following integral

$$
\int_{-\pi}^{\pi}(5 \sin 2 t-\cos 3 t)(\cos 2 t+5 \sin 6 t+\sin 2 t) d t
$$

