MATH 285 E1/F1 GRADED HOMEWORK SET 1 DUE WEDNESDAY SEPTEMBER 10 IN LECTURE

IT WOULD BE SO SWEET if you followed these instructions: Please put each problem on a separate sheet of paper with your name and section (E1 or F1). If a problem runs multiple pages, please staple all the pages for a single problem together. Think of each problem as a separate assignment. This may be annoying, but it will greatly streamline the grading process, resulting in faster feedback for you. Thank you!

Section and problem numbers refer to Differential Equations $\mathcal{B}^{\mathcal{B}}$ Boundary Value Problems, Fourth Edition, by Edwards and Penney.
(1) Let $f(x)$ be the function defined piece-wise as

$$
f(x)= \begin{cases}x & \text { if } x \leq 5 \\ 5 & \text { if } x>5\end{cases}
$$

Find the solution of the initial value problem

$$
\frac{d y}{d x}=f(x), \quad y(0)=100
$$

Hint: Your solution will also be defined piece-wise.
Solution:

$$
y(x)= \begin{cases}100+\frac{1}{2} x^{2} & \text { if } x \leq 5 \\ 100-\frac{25}{2}+5 x & \text { if } x>5\end{cases}
$$

To obtain this, first consider the range $x \leq 5$. The equation becomes $\frac{d y}{d x}=x$, with general solution $y(x)=\frac{1}{2} x^{2}+C$. In order to satisfy the initial condition $y(0)=100$, the constant must be $C=100$. This gives the first part of the piece-wise definition.

Second, consider the range $x>5$. The equation becomes $\frac{d y}{d x}=5$, with general solution $y(x)=5 x+D$. We have to choose the value of D so that the two pieces match at $x=5$ (that is, so that $y(x)$ is a continuous function). At $x=5$, the formula $100+\frac{1}{2} x^{2}$ has the value $100+\frac{25}{2}$. So we need $5(5)+D=100+\frac{25}{2}$, hence $D=100-\frac{25}{2}$. This gives the second part of the piece-wise definition.
(2) Consider the differential equation

$$
\frac{d y}{d x}=-\frac{x}{y} .
$$

Sketch the slope field for this equation. What are the solution curves? Hint: You should recognize them as semi-familiar geometric shapes.

Solution: The slope field is perpendicular to the lines through the origin. The solution curves are the upper and lower half-circles centered at the origin. Note that an entire circle is not a solution curve because it does not define y as a function of x.
(3) Section 1.4, problem 22.

Solution:

$$
y(x)=-3 e^{x^{4}-x}
$$

Starting from $\frac{d y}{d x}=4 x^{3} y-y$, separate variables to obtain

$$
\begin{gathered}
\int \frac{d y}{y}=\int\left(4 x^{3}-1\right) d x \\
\ln |y|=x^{4}-x+C \\
y= \pm e^{C} e^{x^{4}-4}=D e^{x^{4}-x}
\end{gathered}
$$

(where the constant D absorbs the plus/minus sign and e^{C}). We now use the initial condition $y(1)=-3$.

$$
-3=y(1)=D e^{1^{4}-1}=D e^{0}=D
$$

So $D=-3$.
(4) Section 1.5, problem 10 (Find the general solution valid for $x>0$).

Solution:

$$
y(x)=3 x^{3}+C x^{3 / 2} .
$$

We first put the equation $2 x y^{\prime}-3 y=9 x^{3}$ into standard form

$$
y^{\prime}-\frac{3}{2 x} y=\frac{9}{2} x^{2}
$$

An integrating factor is

$$
e^{\int-\frac{3}{2 x} d x}=e^{-\frac{3}{2} \ln |x|}=\left(e^{\ln |x|}\right)^{-3 / 2}=|x|^{-3 / 2}
$$

Since we are restricting the domain to $x>0$, we may simply use $x^{-3 / 2}$ as the integrating factor. Multiply through:

$$
\begin{gathered}
x^{-3 / 2} y^{\prime}-\frac{3}{2} x^{-5 / 2} y=\frac{9}{2} x^{1 / 2} \\
\frac{d}{d x}\left(x^{-3 / 2} y\right)=\frac{9}{2} x^{1 / 2}
\end{gathered}
$$

Integrate:

$$
x^{-3 / 2} y=3 x^{3 / 2}+C
$$

Solve for y :

$$
y=3 x^{3}+C x^{3 / 2}
$$

(5) Section 1.6, problem 14.

Solution:

$$
y(x)= \pm \sqrt{2 C x+C^{2}}
$$

Starting from $y y^{\prime}+x=\sqrt{x^{2}+y^{2}}$, use the substitution $u=x^{2}+y^{2}$. Then $u^{\prime}=2 x+2 y y^{\prime}$, which we recognize as 2 times the left-hand side. The equation becomes

$$
(1 / 2) u^{\prime}=\sqrt{u}
$$

Separate variables:

$$
\begin{gathered}
\int(1 / 2) u^{-1 / 2} d u=\int d x \\
u^{1 / 2}=x+C \\
u=(x+C)^{2}
\end{gathered}
$$

Finally, solve for y :

$$
\begin{gathered}
x^{2}+y^{2}=u=(x+C)^{2} \\
y= \pm \sqrt{(x+C)^{2}-x^{2}} \\
y= \pm \sqrt{2 C x+C^{2}}
\end{gathered}
$$

