NAME:

NetID:

MATH 285 E1/F1 Exam 3 (C) November 14, 2014 Instructor: Pascaleff

INSTRUCTIONS:

- Do all work on these sheets.
- Show all work.
- The exam is 50 minutes.
- Do not discuss this exam with anyone until after 3:00 pm on Nov. 14, 2014.

Problem	Possible	Actual
1	20	
2	20	
3	20	
4	20	
5	20	
Total	100	

Orthogonality formulas

$$
\begin{gather*}
\int_{-L}^{L} \cos \frac{m \pi t}{L} \cos \frac{n \pi t}{L} d t= \begin{cases}0, & m \neq n \\
L, & m=n\end{cases} \tag{1}\\
\int_{-L}^{L} \sin \frac{m \pi t}{L} \sin \frac{n \pi t}{L} d t= \begin{cases}0, & m \neq n \\
L, & m=n\end{cases} \tag{2}\\
\int_{-L}^{L} \cos \frac{m \pi t}{L} \sin \frac{n \pi t}{L} d t=0 \tag{3}
\end{gather*}
$$

SOME INTEGRAL FORMULAS

$$
\begin{align*}
& \int u \cos u d u=u \sin u+\cos u+C \tag{4}\\
& \int u \sin u d u=-u \cos u+\sin u+C \tag{5}
\end{align*}
$$

1. (20 points) Find the general solution of the differential equation

$$
y^{\prime}-4 y=x e^{4 x}
$$

2. (20 points) Consider the forced oscillator with mass $m=1$, spring constant $k=7$, no damping $c=0$, and forcing function $F(t)$:

$$
F(t)=2 \sin 2 t+\cos 4 t+\cos 6 t
$$

Find a particular solution of the differential equation $m x^{\prime \prime}+k x=F(t)$.
3. (a) (10 points) Suppose that a function $f(t)$ which is periodic of period 2π has the Fourier series

$$
f(t)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}+3} \sin n t
$$

Use the orthogonality formulas to evaluate the integral

$$
\int_{-\pi}^{\pi} f(t) \sin 2 t d t
$$

(b) (10 points) Let $g(t)$ be the function which is periodic of period 24, and which is defined on the interval $-12 \leq t<12$ by the formula

$$
g(t)=4+2 t+7 t^{2}
$$

Set up, but do not evaluate, an integral expression for the coefficient of $\cos \frac{5 \pi t}{12}$ in the Fourier series of $g(t)$ (also known as a_{5} in our standard notation).
4. (a) (5 points) Consider the function which is periodic of period 2π defined on the interval $-\pi \leq t<\pi$

$$
f(t)= \begin{cases}800, & -\pi \leq t<0 \\ 609250, & t=0 \\ t, & 0<t<\pi\end{cases}
$$

If we take the Fourier series of $f(t)$, and put $t=0$ in that series, what number does it converge to? Put another way, what is the sum of the Fourier series of $f(t)$ at $t=0$? Explain your answer (briefly).
(b) (15 points) Consider the function defined by the Fourier series

$$
g(t)=\sum_{n=1}^{\infty} 2 e^{-3 n} \sin n \pi t
$$

Find a Fourier series expression for the antiderivative $\int g(t) d t$. You are not expected to address the question of convergence.
5. (20 points) Find the Fourier series of the periodic function of period 2 defined on the interval $-1 \leq t<1$ by

$$
f(t)=3|t|, \quad-1 \leq t<1
$$

Hint: You should use the fact that $f(t)$ is an even function.

This page is for work that doesn't fit on other pages.

