name: Solutions
NetID:

MATH 285 E1/F1 Exam 3 (B) November 14, 2014 Instructor: Pascaleff

## INSTRUCTIONS:

- Do all work on these sheets.
- Show all work.
- The exam is 50 minutes.
- Do not discuss this exam with anyone until after 3:00 pm on Nov. 14, 2014.

| Problem | Possible | Actual |
| :---: | :---: | :---: |
| 1 | 20 |  |
| 2 | 20 |  |
| 3 | 20 |  |
| 4 | 20 |  |
| 5 | 20 |  |
| Total | 100 |  |

## Orthogonality formulas

$$
\begin{gather*}
\int_{-L}^{L} \cos \frac{m \pi t}{L} \cos \frac{n \pi t}{L} d t= \begin{cases}0, & m \neq n \\
L, & m=n\end{cases}  \tag{1}\\
\int_{-L}^{L} \sin \frac{m \pi t}{L} \sin \frac{n \pi t}{L} d t= \begin{cases}0, & m \neq n \\
L, & m=n\end{cases}  \tag{2}\\
\int_{-L}^{L} \cos \frac{m \pi t}{L} \sin \frac{n \pi t}{L} d t=0 \tag{3}
\end{gather*}
$$

SOME INTEGRAL FORMULAS

$$
\begin{align*}
& \int u \cos u d u=u \sin u+\cos u+C  \tag{4}\\
& \int u \sin u d u=-u \cos u+\sin u+C \tag{5}
\end{align*}
$$

1. (20 points) Find the general solution of the differential equation

$$
(D-5) y=x e^{5 x}
$$

Annihilator of $x e^{5 x}$ is $(D-5)^{2}$
Apply to both sides $(D-5)^{3} y=0$
so try $y=A e^{5 x}+B x e^{5 x}+C x^{2} e^{5 x}$

$$
\begin{array}{ll}
y^{\prime} & =5 A e^{5 x}+B\left(e^{5 x}+5 x e^{5 x}\right)+C\left(2 x e^{5 x}+5 x^{2} e^{5 x}\right) \\
\frac{-5 y}{}=-5 A e^{5 x}-5 B x e^{5 x}-5 C x^{2} e^{5 x} \\
y^{\prime}-5 y= & B e^{5 x}+2 C x e^{5 x} \\
\text { Must match } & x e^{5 x}
\end{array}
$$

So $A=$ anythny $B=0 \quad \begin{array}{ll}x e^{5 x} \\ 2 C=1 \Rightarrow C=\frac{1}{2}\end{array}$
geneal solution $y=A e^{5 x}+\frac{1}{2} x^{2} e^{5 x} \quad A$ any constrot
2. (20 points) Consider the forced oscillator with mass $m=1$, spring constant $k=5$, no damping $c=0$, and forcing function $F(t)$ :

$$
F(t)=\cos 2 t+\sin 4 t+3 \sin 6 t
$$

Find a particular solution of the differential equation $m x^{\prime \prime}+k x=F(t)$.

$$
x^{\prime \prime}+5 x=\cos 2 t+\sin 4 t+3 \sin 6 t
$$

$$
\begin{aligned}
\text { Try } x= & A_{1} \cos 2 t+B_{1} \sin 2 t+A_{2} \cos 4 t+B_{2} \sin 4 t \\
& +A_{3} \cos 6 t+B_{3} \sin 6 t \\
x^{\prime \prime}= & -4 A_{1} \cos 2 t-4 B_{1} \sin 2 t-16 A_{2} \cos 4 t-16 B_{2} \sin 4 t \\
& -36 A_{3} \cos 6 t-36 B_{3} \sin 6 t \\
x^{\prime \prime}+5 x= & A_{1} \cos 2 t+B_{1} \sin 2 t-11 A_{2} \cos 4 t-11 B_{2} \sin 4 t \\
& -31 A_{3} \cos 6 t-31 B_{3} \sin 6 t
\end{aligned}
$$

most natch $\cos 2 t+\sin 4 t+3 \sin 6 t$

$$
\begin{gathered}
A_{1}=1 \quad B_{1}=0 \quad A_{2}=0 \quad \begin{array}{l}
-\| B_{2}=1 \quad A_{3}=0 \\
B_{2}=-1
\end{array} \\
\therefore \quad \begin{array}{l}
-3\left(B_{3}=3\right. \\
B_{3}=\frac{-3}{31}
\end{array} \\
\therefore \quad x(t)=\cos 2 t-\frac{1}{11} \sin 4 t-\frac{3}{31} \sin 6 t
\end{gathered}
$$

3. (a) (10 points) Suppose that a function $f(t)$ which is periodic of period $2 \pi$ has the Fourier series

$$
f(t)=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}+1} \sin n t
$$

Use the orthogonality formulas to evaluate the integral

$$
\int_{-\pi}^{\pi} \sum \frac{(-1)^{n}}{n^{2}+1} \sin n t \sin 3+d t=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}+1} \int_{-\pi}^{\pi} \sin n t d t \sin 3 t d t
$$

All the terms are zero except when $n=3$ :

$$
=\frac{(-1)^{3}}{3^{2}+1} \int_{-\pi}^{\pi} \sin 3+\sin 3+d 6=\frac{-1}{10} \pi=\frac{-\pi}{10}
$$

(b) (10 points) Let $g(t)$ be the function which is periodic of period 20, and which is defined on the interval $-10 \leq t<10$ by the formula

$$
g(t)=7 t^{2}+2 t+3
$$

Set up, but do not evaluate, an integral expression for the coefficient of $\sin \frac{3 \pi t}{10}$ in the Fourier series of $g(t)$ (also known as $b_{3}$ in our standard notation).

$$
b_{3}=\frac{1}{10} \int_{-10}^{10}\left(7 t^{2}+2 t+3\right) \sin \frac{3 \pi t}{10} d t
$$

4. (a) ( 5 points) Consider the function which is periodic of period $2 \pi$ defined on the interval $-\pi \leq t<\pi$

$$
f(t)= \begin{cases}t, & -\pi \leq t<0 \\ 609250, & t=0 \\ 8, & 0<t<\pi\end{cases}
$$

If we take the Fourier series of $f(t)$, and put $t=0$ in that series, what number does it converge to? Put another way, what is the sum of the Fourier series of $f(t)$ at $t=0$ ? Explain your answer (briefly).

$$
\lim _{t \rightarrow 0^{-}} f(t)=0 \quad \lim _{t \rightarrow 0^{+}} f(t)=8
$$

Since $t=0$ is a point of disontimitity, the Favier series converges to the aurage of she one sided limits.

$$
\frac{1}{2}[0+8]=4
$$

(b) (15 points) Consider the function defined by the Fourier series

$$
g(t)=\sum_{n=1}^{\infty} 4 e^{-4 n} \sin n \pi t
$$

Find a Fourier series expression for the antiderivative $\int g(t) d t$. You are not expected to address the question of convergence.

$$
\begin{aligned}
\int g(t) d t & =\sum_{n=1}^{\infty} 4 e^{-4 n} \int \sin n \pi t d t \\
& =\sum_{n=1}^{\infty} 4 e^{-4 n} \frac{-1}{n \pi} \cos n \pi t+C \\
& =\sum_{n=1}^{\infty} \frac{-4 e^{-4 n}}{n \pi} \cos n \pi t+C
\end{aligned}
$$

5. (20 points) Find the Fourier series of the periodic function of period 2 defined on the interval $-1 \leq t<1$ by

$$
f(t)=4|t|, \quad-1 \leq t<1
$$

Hint: You should use the fact that $f(t)$ is an even function.
$f(t)$ ever $\Rightarrow$ sine coefficients $b_{n}=0$ for all $n$

$$
\begin{aligned}
& a_{0}=\frac{2}{1} \int_{0}^{1} f(t) d t=2 \int_{0}^{1} 4 t d t=4\left[t^{2}\right]_{0}^{1}=4(1-0)=4 \\
& a_{n}=\frac{2}{1} \int_{0}^{1} f(t) \cos \frac{n \pi t}{1} d t=2 \int_{0}^{1} 4 t \cos n \pi t d t \\
& \{\text { let } u=n \pi t \quad d u=n \pi d t\} \\
& =8\left(\frac{1}{n \pi}\right)^{2} \int_{0}^{1}(n \pi t)(\cos n \pi t) n t d t=8\left(\frac{1}{n \pi}\right)^{2} \int_{0}^{n \pi} u \cos u d u \\
& =8\left(\frac{1}{n \pi}\right)^{2}[u \sin u+\cos u]_{0}^{n \pi} \text { ky formula } \\
& =8\left(\frac{1}{n \pi}\right)^{2}[n \pi \sin n \pi+\cos n \pi-0 \sin 0-\cos 0] \\
& =8\left(\frac{1}{n \pi}\right)^{2}[\cos n \pi-1] \\
& =8\left(\frac{1}{n \pi}\right)^{2}\left[(-1)^{n}-1\right]=8\left(\frac{1}{n \pi}\right)^{2}\left\{\begin{array}{cc}
-2 & n \text { odd } \\
0 & n \text { even }
\end{array}\right\} \\
& =\left\{\begin{array}{cc}
\frac{-16}{(n \pi)^{2}} & n \text { odd } \\
0 & \text { never }
\end{array}\right\} \quad \rightarrow \text { continues }
\end{aligned}
$$

This page is for work that doesn't fit on other pages.
Thus the Fourier series of $f(t)$ is

$$
\begin{aligned}
& \frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n \pi t \\
= & \frac{4}{2}+\sum_{n=1}^{\infty}\left\{\begin{array}{cc}
\frac{-16}{(n \pi)^{2}} & \text { nod } \\
0 & \text { nevi }
\end{array}\right\} \cos n \pi t \\
= & 2+\sum_{n \text { odd }} \frac{-16}{(n \pi)^{2}} \cos n \pi t
\end{aligned}
$$

