NAME:

NetID:

MATH 285	E1/F1	Exam	1 (A)	September	19,	2

9, 2014 Instructor: Pascaleff

		Problem	Possible	Actual
		1	20	
		2	20	
		3	20	
INSTRUCTIONS:	e sheets.	4	20	
• Do all work on these sheets.		5	20	
• Show all work.		Total	100	

1. (20 points) Consider the differential equation

$$\frac{dy}{dx} = xy$$

Which of the following graphs could be a solution curve of this equation? Circle all that apply.

2. (20 points) An object moves along a one-dimensional axis. Its motion is described by a function x(t). It is subjected to an acceleration given by

$$a(t) = 1 + \pi \sin(\pi t).$$

Suppose that at t = 0, the velocity is zero: v(0) = 0. What is the net change in position between t = 0 and t = 1? That is, what is x(1) - x(0)?

3. (20 points) Find the general solution, valid for x > 0, of

$$\frac{dy}{dx} = \frac{x^4 + 2y}{x}$$

Hint: Linear equation, integrating factor.

4. (20 points) Consider the equation

$$\frac{dy}{dx} - \frac{2}{x}y = y^2$$

Use the substitution $u = y^{-1}$ to transform this equation into a linear equation for u. Do not solve the resulting equation; the purpose of this problem is merely to transform the original equation for y into one for u.

5. (20 points) A metal ball has been heated to $1000^{\circ}C$. It is placed into a bath of ice water at $0^{\circ}C$. After 5 seconds, it has cooled to a temperature of $(1000e^{-10})^{\circ}C$ (approximately $0.045^{\circ}C$).

Suppose now that the metal ball is heated again to $1000^{\circ}C$, but instead it is placed into boiling water at $100^{\circ}C$. How long will it take to reach a temperature of $200^{\circ}C$?

In both situation, the cooling process is governed by Newton's law of cooling:

$$\frac{dT}{dt} = -k(T - A)$$

where A is the temperature of the water, and k is a constant.

This page is for work that doesn't fit on the other pages. Please indicate the problem that the work goes with.