NAME:

NetID:

MATH 285 E1/F1 Exam 1 (A) September 19, 2014 Instructor: Pascaleff

INSTRUCTIONS:

- Do all work on these sheets.
- Show all work.

Problem	Possible	Actual
1	20	
2	20	
3	20	
4	20	
5	20	
Total	100	

1. (20 points) Consider the differential equation

$$
\frac{d y}{d x}=x y
$$

Which of the following graphs could be a solution curve of this equation? Circle all that apply.

2. (20 points) An object moves along a one-dimensional axis. Its motion is descibed by a function $x(t)$. It is subjected to an acceleration given by

$$
a(t)=1+\pi \sin (\pi t) .
$$

Suppose that at $t=0$, the velocity is zero: $v(0)=0$. What is the net change in position between $t=0$ and $t=1$? That is, what is $x(1)-x(0)$?
3. (20 points) Find the general solution, valid for $x>0$, of

$$
\frac{d y}{d x}=\frac{x^{4}+2 y}{x}
$$

Hint: Linear equation, integrating factor.
4. (20 points) Consider the equation

$$
\frac{d y}{d x}-\frac{2}{x} y=y^{2}
$$

Use the substitution $u=y^{-1}$ to transform this equation into a linear equation for u. Do not solve the resulting equation; the purpose of this problem is merely to transform the original equation for y into one for u.
5. (20 points) A metal ball has been heated to $1000^{\circ} \mathrm{C}$. It is placed into a bath of ice water at $0^{\circ} \mathrm{C}$. After 5 seconds, it has cooled to a temperature of $\left(1000 e^{-10}\right)^{\circ} \mathrm{C}$ (approximately $0.045^{\circ} \mathrm{C}$).

Suppose now that the metal ball is heated again to $1000^{\circ} \mathrm{C}$, but instead it is placed into boiling water at $100^{\circ} \mathrm{C}$. How long will it take to reach a temperature of $200^{\circ} \mathrm{C}$?

In both situation, the cooling process is governed by Newton's law of cooling:

$$
\frac{d T}{d t}=-k(T-A)
$$

where A is the temperature of the water, and k is a constant.

This page is for work that doesn't fit on the other pages. Please indicate the problem that the work goes with.

