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Lecture 17: Section 4.9

49. The statement that the slope of the tangent line at (x , f (x)) is 2x+1 means
f ′(x) = 2x + 1. Thus f (x) is an antiderivative of this expression, and we
conclude f (x) = x2 + x + C for some constant C . The statement that the
graph of f passes through (1,6) means f (1) = 6, or

f (1) = (1)2 + 1+ C = 6,

so C = 4. Thus f (x) = x2 + x + 4. We then find f (2) = 10.

62. Given data: acceleration a(t) = 3cos t − 2 sin t, initial position s(0) = 0,
initial velocity v(0) = 4. The velocity v(t) is an antiderivative fo a(t). Using
known antiderivatives for sin t and cos t we get

v(t) = 3 sin t + 2cos t + C .

Now v(0) = 2+ C , and since we must have v(0) = 4 we take C = 2. The
position s(t) is an antiderivative of v(t), so we get

s(t) =−3cos t + 2sin t + 2t + D.

Now s(0) = −3+ D, and since we must have s(0) = 0, we have D = 3. The
result is

s(t) =−3cos t + 2sin t + 2t + 3.

67. The object is thrown upward with initial velocity v0 and initial position s0.
The units are meters and seconds. We are to show

[v(t)]2 = v2
0 − 19.6[s(t)− s0].

To prove this equation, we check that it holds at t = 0, and that the deriva-
tive of the equation is valid at all times. When t = 0, the equation

[v(0)]2 = v2
0 − 19.6[s(0)− s0]
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is valid because s(0) = s0 and v(0) = v0, and thus the expression [s(0)− s0]
is zero, and [v(0)]2 = v2

0 . Now take the derivative with respect to t of the
equation we are to prove. This becomes

2v(t)v′(t) =−19.6s′(t)

because all of the constant terms go away. Because s′(t) = v(t) by definition,
we must prove 2v′(t) = −19.6, that is v′(t) = −9.8. But v′(t) = a(t) is the
acceleration; since the object is subject to gravity, a(t) = −9.8 m/s2, so the
equation holds.

A comment about the method of proof. Another way to look at it is that
we consider the function f (t) = [v(t)]2 − v2

0 + 19.6[s(t)− s0] given by the
difference of the two sides of the equation we wish to prove. What we have
shown is that f (0) = 0 and f ′(t) = 0. Since a function with zero derivative
is constant, we find f (t) = 0 for all t, meaning the desired equation is valid
for all t.

Lecture 18: Section 5.2

30. Express
∫ 10

1
(x − 4 ln x) d x as a limit of Riemann sums. For n subdivisions,

the width of each subinterval is ∆x = (10− 1)/n = 9/n. Let us sample at
the right endpoints, namely at the points x i = 1+ i(9/n) for i in the range
1 to n. The Riemann sum is then

n
∑

i=1

f (x i)∆x =
n
∑

i=1

��

1+
9i

n

�

− 4 ln
�

1+
9i

n

��

9

n

The integral is then the limit as n goes to∞
∫ 10

1

(x − 4 ln x) d x = lim
n→∞

n
∑

i=1

��

1+
9i

n

�

− 4 ln
�

1+
9i

n

��

9

n

52. We have F(x) =
∫ x

2
f (t) d t, where the graph of f (t) is given, and f (t) is

positive between 0 and 2, and negative between 2 and 5. The greatest value

of the function F(x) is F(2) =
∫ 2

2
f (t) d t = 0. To justify this, we claim that

F(x) is negative for other values of x . If x is between 2 and 5, then F(x)
is the integral of a negative function, and so it must be negative. If x is
between 0 and 2, we are integrating a positive function, but the limits of
integration are in the wrong order—the upper limit is less than the lower
limit—so the integral is once again negative.

72. Express as an integral the limit

lim
n→∞

1

n

n
∑

i=1

1

1+ (i/n)2
.
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To recognize this as a Riemann sum, we see that we are sampling the func-
tion f (x) = 1

1+x2 at the points x i = i/n. These points are separated by the

interval ∆x = 1
n
, which we also recognize as the factor in front of the sum.

The overall interval has length n∆x = 1, and because xn = 1 for all n, we
reckon that we must be integrating from 0 to 1. Thus

lim
n→∞

1

n

n
∑

i=1

1

1+ (i/n)2
=

∫ 1

0

1

1+ x2 d x

Lecture 20: Section 5.4

4. Verify by differentiation that
∫

x
p

a+ bx
d x =

2

3b2 (bx − 2a)
p

a+ bx + C

Differentate the right-hand side. The constant goes away, and the product
rule yields

2

3b2

�

b
p

a+ bx + (bx − 2a)
1

2
p

a+ bx
b
�

Let us factor bp
a+bx

out of the brackets

2

3b2

�

b
p

a+ bx

�

[a+ bx + (bx − 2a)/2]

Simplify:
2

3b2

�

b
p

a+ bx

�

[3bx/2] =
x

p
a+ bx

And we’re done.

53. If oil leaks from a tank at a rank of r(t) gallons per minute, then
∫ 120

0
r(t) d t

is the total amount of oil, in gallons, that leaks from the tank in the two hour
period from t = 0 to t = 120.

54. A honeybee population starts with 100 bees and increases at a rate of n′(t)
bees per week. Then 100+

∫ 15

0
n′(t) d t represents the honeybee population

15 weeks after the start.

Lecture 22: Sections 6.2 and 7.1

61. We slice the torus horizontally into washers. The cross-section of the torus
is a circle whose equation is (x − R)2 + y2 = r2. Using y as the parameter,
the washers have inner and outer radii given by

x = R±
p

r2 − y2
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The volume is therefore

V =

∫ r

−r

π

�
�

R+
p

r2 − y2
�2
−
�

R−
p

r2 − y2
�2�

d y

Let us simplify the expression inside the brackets

�

R+
p

r2 − y2
�2
−
�

R−
p

r2 − y2
�2

= R2+2R
p

r2 − y2+(r2− y2)−R2+2R
p

r2 − y2−(r2− y2) = 4R
p

r2 − y2

Thus

V =

∫ r

−r

4πR
p

r2 − y2 d y = 4πR

∫ r

−r

p

r2 − y2 d y

The last integral is an expression for the area of the semicircle bounded by
x2 + y2 = r2 and the y-axis. Thus it equals 1

2
πr2. So finally

V = 4πR
�

1

2
πr2
�

= 2π2Rr2

67. The velocity is given by v(t) = t2e−t . To find the position, we need to
integrate this, and we use integration by parts.

∫

t2e−t d t = t2(−e−t)−
∫

2t(−e−t) d t =−t2e−t + 2

∫

te−t d t

Using parts again
∫

te−t d t = t(−e−t)−
∫

(−e−t) d t =−te−t − e−t

Putting it together
∫

v(t) d t =−t2e−t + 2[−te−t − e−t] + C =−t2e−t − 2te−t − 2e−t + C

The problem asks how for the particle travels in the first t seconds. This is
the definite integral
∫ t

0

v(t ′) d t ′ =
�

−(t ′)2e−t ′ − 2t ′e−t ′ − 2e−t ′
�t

0
=−t2e−t − 2te−t − 2e−t + 2

70. (a) We use integration by parts with u = f (x) and dv = 1 d x . Thus du =
f ′(x) d x and v = x .

∫

f (x) d x = x f (x)−
∫

x f ′(x) d x
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(b) Now we consider inverse functions f and g. We make the substitution
y = f (x) in the second integral. Thus x = g(y) and d y = f ′(x) d x . So
∫

x f ′(x) d x =
∫

g(y) d y . If the limits of integration are x = a to x = b,
we must integrate from y = f (a) to y = f (b). Combining this with the
previous part, we obtain
∫ b

a

f (x) d x = [x f (x)]ba −
∫ b

a

x f ′(x) d x = b f (b)− a f (a)−
∫ f (b)

f (a)

g(y) d y

(c) Here is a figure illustrating the identity in terms of areas:

(d) We evaluate
∫ e

1
ln x d x . Here f (x) = ln x and g(y) = e y . f (1) = 0 and

f (e) = 1.
∫ e

1

ln x d x = e · 1− 1 · 0−
∫ 1

0

e y d y = e− [e y]10 = e− (e− 1) = 1

Lecture 23: Sections 7.1 and 7.2

48. (a) To prove the reduction formula, start with
∫

cosn x d x , and integrate by
parts with u= cosn−1 x and dv = cos x d x . Then du=−(n−1) cosn−2 x sin x d x ,
and v = sin x . We obtain

∫

cosn x d x = cosn−1 x sin x + (n− 1)

∫

cosn−2 x sin x sin x d x

Using sin2 x = 1− cos2 x we get
∫

cosn x d x = cosn−1 x sin x + (n− 1)

∫

cosn−2 x(1− cos2 x) d x
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∫

cosn x d x = cosn−1 x sin x + (n− 1)

∫

cosn−2 x d x − (n− 1)

∫

cosn x d x

Putting the last term over on the left-hand side gives

n

∫

cosn x d x = cosn−1 x sin x + (n− 1)

∫

cosn−2 x d x

And finally
∫

cosn x d x =
1

n
cosn−1 x sin x +

n− 1

n

∫

cosn−2 x d x

(b) We apply the formula for n= 2, using the fact that cos0 x = 1.
∫

cos2 x d x =
1

2
cos x sin x +

1

2

∫

1 d x =
1

2
cos x sin x +

1

2
x + C

(c) We apply the formula for n= 4.
∫

cos4 x d x =
1

4
cos3 x sin x +

3

4

∫

cos2 x d x

Using the result of part (b),
∫

cos4 x d x =
1

4
cos3 x sin x +

3

4

�

1

2
cos x sin x +

1

2
x
�

+ C

∫

cos4 x d x =
1

4
cos3 x sin x +

3

8
cos x sin x +

3

8
x + C

67. To prove this formula, we can observe that sin mx cos nx is an odd function
of x . Therefore its integral over the symmetric interval −π to π must be
zero. More computationally, we can use the product-to-sum formula on
page 476.

sin mx cos nx =
1

2
[sin(mx − nx) + sin(mx + nx)]

Thus
∫ π

−π
sin mx cos nx d x =

1

2

∫ π

−π
{sin[(m− n)x] + sin[(m+ n)x]} d x

As long as neither m− n nor m+ n equals zero, we get

1

2

�− cos[(m− n)x]
m− n

+
− cos[(m+ n)x]

m+ n

�π

−π

This equals zero because cos[(m− n)x] and cos[(m+ n)x] are even func-
tions, and so have the same values at −π and π. If m− n equals zero, then
the first term is simply not present, as sin[0x] = 0. Similarly, if m+n equals
zero, the the second term is not present. In all cases, the integral is zero.
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68. The calculation is very similar to the previous problem.

∫ π

−π
sin mx sin nx d x =

1

2

∫ π

−π
{cos[(m− n)x]− cos[(m+ n)x]} d x

If neither m− n nor m+ n equals zero, we get

1

2

�

sin[(m− n)x]
m− n

−
sin[(m+ n)x]

m+ n

�π

−π

This will always be zero because the value of sine at any integer multiple of
π is zero.

In the statement of the problem we are to assume that m and n are positive
integers, so we can ignore the possibility that m+ n could be zero (as then
either m or n would be negative).

It remains to consider what happens if m− n is zero, that is, if m= n. Then
the term cos[(m− n)x] = cos[0x] = 1 in the integral reduces to a nonzero
constant. We integrate this to

1

2

�

x −
sin[(m+ n)x]

m+ n

�π

−π
=

1

2
[π− (−π)] = π

We conclude that for positive integers m and n, the integral is zero unless
m= n, in which case it is π.

69. This is entirely analogous to the preceding problem. The only difference is
that there is a plus sign between the two terms after we apply the product-
to-sum formula.

Lecture 24: Section 7.3

37. We consider the region bounded by y = 9/(x2+9), y = 0, x = 0 and x = 3.
We want to find the volume of the solid of rotation about the x-axis. We slice
the solid vertically into disks, each with area π(9/(x2 + 9))2 and thickness
d x . Thus

V =

∫ 3

0

π
92

(x2 + 9)2
d x = 81π

∫ 3

0

1

(x2 + 9)2
d x

We use the substitution x = 3 tanθ . Then x2 + 9 = 9 tan2 θ + 9 = 9sec2 θ ,
and d x = 3 sec2 θ dθ . We also convert the limits of integration: as θ goes
from 0 to π/4, tanθ covers exactly the interval from 0 to 1, and x = 3θ
covers the interval from 0 to 3. Thus we convert the integral to

V = 81π

∫ π/4

0

3 sec2 θ dθ

(9sec2 θ)2
= 81π

∫ π/4

0

3

81
cos2 θ dθ = 3π

∫ π/4

0

cos2 θ dθ
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Now we use cos2 θ = 1
2
(1+ cos2θ), so we get

V = 3π
�

1

2
θ +

1

4
sin 2θ

�π/4

0
= 3π

�

π

8
+

1

4
sin(π/2)

�

= 3π
�

π

8
+

1

4

�

=
3π2

8
+

3π

4

39. (a) We apply the substitution t = a sinθ , d t = a cosθ dθ :
∫

p

a2 − t2 d t =

∫

p

a2 − a2 sin2 θa cosθ dθ =

∫

a2 cos2 θ dθ

The original limits of integration are t = 0 to t = x . This becomes θ = 0 to
θ = sin−1(x/a).

∫ x

0

p

a2 − t2 d t =

∫ sin−1(x/a)

0

a2 cos2 θ dθ = a2
�

1

2
θ +

1

4
sin2θ

�sin−1(x/a)

0

So we obtain
1

2
a2 sin−1(x/a) +

1

4
a2 sin(2sin−1(x/a))

We can write

sin(2 sin−1(x/a)) = 2sin(sin−1(x/a)) cos(sin−1(x/a)) = 2(x/a)
p

1− (x/a)2

Now we can put this into the prevous result and simplify to get

1

4
a2 sin(2sin−1(x/a)) =

1

4
a22(x/a)

p

1− (x/a)2 =
1

2
x
p

a2 − x2

Putting it all together, we have
∫ x

0

p

a2 − t2 d t =
1

2
a2 sin−1(x/a) +

1

2
x
p

a2 − x2

(b) The figure shows the portion of the circle of radius a sitting over the

interval from 0 to x . The integral
∫ x

0

p

a2 − t2 d t equals A, the area under-
neath this curve. The figure shows that this area divided into two parts, a
circular sector of angle θ , and a triangle whose vertices are (0,0), (x , 0) and

(x ,
p

a2 − x2). The area of a circular sector is one-half radius-squared times
angle, while the area of a triangle is one-half base times height. Thus

A=
1

2
a2θ +

1

2
x
p

a2 − x2

The figure also shows that sinθ = x/a, so θ = sin−1(x/a). Thus we have
shown geometrically that

∫ x

0

p

a2 − t2 d t = A=
1

2
a2 sin−1(x/a) +

1

2
x
p

a2 − x2
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40. The parabola y = 1
2

x2 divides the disk x2 + y2 ≤ 8 into two parts. Let us
first compute the area of the smaller part which lies above the parabola. The
two curves intersect when y = 1

2
x2 and x2+ y2 = 8, thus 2y + y2 = 8. The

solutions of the equation y2 + 2y − 8= 0 are

y =
−2±

p

22 − 4(−8)
2

=
−2±

p
36

2
=−1± 3

As y = 1
2

x2 must be positive, the negative solution is spurious, and we have
y = 2. Thus x2 = 4, and x = ±2. The area above the parabola and below
the circle is given by the integral

A=

∫ 2

−2

�

p

8− x2 −
1

2
x2
�

d x =

∫ 2

−2

p

8− x2 d x −
∫ 2

−2

1

2
x2 d x

To calculate the first integral, we can use the fact that the integrand is an
even function, and the result of the previous problem with a =

p
8= 2

p
2.

∫ 2

−2

p

8− x2 d x = 2

∫ 2

0

p

8− x2 d x = 2
�

1

2
8 sin−1(2/(2

p
2)) +

1

2
2
p

8− 22

�

= 8 sin−1(1/
p

2) + 2
p

2= 8(π/4) + 2
p

2= 2π+ 2
p

2

The second integral is straight-forward.

∫ 2

−2

1

2
x2 d x = 2

∫ 2

0

1

2
x2 d x =

�

x3

3

�2

0

=
8

3

The total are of this part is

A= 2π+ 2
p

2−
8

3

The other part of the disk that is below the parabola has complementary
area. Since the total area of the disk is 8π, this part must have area

8π− (2π+ 2
p

2− 8/3) = 6π− 2
p

2+
8

3

Lecture 25: Section 7.4

59. (a) We set t = tan(x/2) for −π < x < π. We draw a right triangle with

angle x/2, adjacent leg 1, opposite leg t, and hypotenuse
p

1+ t2. Then
we have

cos(x/2) =
1

p

1+ t2
, sin(x/2) =

t
p

1+ t2
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These expressions have the right sign for −π < x < π, since we have
cos(x/2) positive in this range.

(b) We use the double angle formulas.

cos x = cos2(x/2)− sin2(x/2) =
1

1+ t2 −
t2

1+ t2 =
1− t2

1+ t2

sin x = 2 sin(x/2) cos(x/2) = 2
t

p

1+ t2

1
p

1+ t2
=

2t

1+ t2

(c) Solving t = tan(x/2) for x gives x = 2 tan−1 t. Thus

d x =
2

1+ t2 d t

60. We apply the substitution from the previous problem
∫

d x

1− cos x
=

∫

1

1− 1−t2

1+t2

2

1+ t2 d t =

∫

2

(1+ t2)− (1− t2)
d t =

∫

2

2t2 d t

=

∫

t−2 d t =−t−1 + C =−(tan(x/2))−1 + C =− cot(x/2) + C


