Solutions to ungraded homework: Lectures 17-25

M 408C, University of Texas at Austin

December 6, 2013

Lecture 17: Section 4.9

49. The statement that the slope of the tangent line at $(x, f(x))$ is $2 x+1$ means $f^{\prime}(x)=2 x+1$. Thus $f(x)$ is an antiderivative of this expression, and we conclude $f(x)=x^{2}+x+C$ for some constant C. The statement that the graph of f passes through $(1,6)$ means $f(1)=6$, or

$$
f(1)=(1)^{2}+1+C=6,
$$

so $C=4$. Thus $f(x)=x^{2}+x+4$. We then find $f(2)=10$.
62. Given data: acceleration $a(t)=3 \cos t-2 \sin t$, initial position $s(0)=0$, initial velocity $v(0)=4$. The velocity $v(t)$ is an antiderivative fo $a(t)$. Using known antiderivatives for $\sin t$ and $\cos t$ we get

$$
v(t)=3 \sin t+2 \cos t+C .
$$

Now $v(0)=2+C$, and since we must have $v(0)=4$ we take $C=2$. The position $s(t)$ is an antiderivative of $v(t)$, so we get

$$
s(t)=-3 \cos t+2 \sin t+2 t+D .
$$

Now $s(0)=-3+D$, and since we must have $s(0)=0$, we have $D=3$. The result is

$$
s(t)=-3 \cos t+2 \sin t+2 t+3
$$

67. The object is thrown upward with initial velocity v_{0} and initial position s_{0}. The units are meters and seconds. We are to show

$$
[v(t)]^{2}=v_{0}^{2}-19.6\left[s(t)-s_{0}\right] .
$$

To prove this equation, we check that it holds at $t=0$, and that the derivative of the equation is valid at all times. When $t=0$, the equation

$$
[v(0)]^{2}=v_{0}^{2}-19.6\left[s(0)-s_{0}\right]
$$

is valid because $s(0)=s_{0}$ and $v(0)=v_{0}$, and thus the expression $\left[s(0)-s_{0}\right.$] is zero, and $[v(0)]^{2}=v_{0}^{2}$. Now take the derivative with respect to t of the equation we are to prove. This becomes

$$
2 v(t) v^{\prime}(t)=-19.6 s^{\prime}(t)
$$

because all of the constant terms go away. Because $s^{\prime}(t)=v(t)$ by definition, we must prove $2 v^{\prime}(t)=-19.6$, that is $v^{\prime}(t)=-9.8$. But $v^{\prime}(t)=a(t)$ is the acceleration; since the object is subject to gravity, $a(t)=-9.8 \mathrm{~m} / \mathrm{s}^{2}$, so the equation holds.
A comment about the method of proof. Another way to look at it is that we consider the function $f(t)=[v(t)]^{2}-v_{0}^{2}+19.6\left[s(t)-s_{0}\right]$ given by the difference of the two sides of the equation we wish to prove. What we have shown is that $f(0)=0$ and $f^{\prime}(t)=0$. Since a function with zero derivative is constant, we find $f(t)=0$ for all t, meaning the desired equation is valid for all t.

Lecture 18: Section 5.2

30. Express $\int_{1}^{10}(x-4 \ln x) d x$ as a limit of Riemann sums. For n subdivisions, the width of each subinterval is $\Delta x=(10-1) / n=9 / n$. Let us sample at the right endpoints, namely at the points $x_{i}=1+i(9 / n)$ for i in the range 1 to n. The Riemann sum is then

$$
\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x=\sum_{i=1}^{n}\left[\left(1+\frac{9 i}{n}\right)-4 \ln \left(1+\frac{9 i}{n}\right)\right] \frac{9}{n}
$$

The integral is then the limit as n goes to ∞

$$
\int_{1}^{10}(x-4 \ln x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left[\left(1+\frac{9 i}{n}\right)-4 \ln \left(1+\frac{9 i}{n}\right)\right] \frac{9}{n}
$$

52. We have $F(x)=\int_{2}^{x} f(t) d t$, where the graph of $f(t)$ is given, and $f(t)$ is positive between 0 and 2, and negative between 2 and 5 . The greatest value of the function $F(x)$ is $F(2)=\int_{2}^{2} f(t) d t=0$. To justify this, we claim that $F(x)$ is negative for other values of x. If x is between 2 and 5 , then $F(x)$ is the integral of a negative function, and so it must be negative. If x is between 0 and 2, we are integrating a positive function, but the limits of integration are in the wrong order-the upper limit is less than the lower limit-so the integral is once again negative.
53. Express as an integral the limit

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \frac{1}{1+(i / n)^{2}}
$$

To recognize this as a Riemann sum, we see that we are sampling the function $f(x)=\frac{1}{1+x^{2}}$ at the points $x_{i}=i / n$. These points are separated by the interval $\Delta x=\frac{1}{n}$, which we also recognize as the factor in front of the sum. The overall interval has length $n \Delta x=1$, and because $x_{n}=1$ for all n, we reckon that we must be integrating from 0 to 1 . Thus

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \frac{1}{1+(i / n)^{2}}=\int_{0}^{1} \frac{1}{1+x^{2}} d x
$$

Lecture 20: Section 5.4

4. Verify by differentiation that

$$
\int \frac{x}{\sqrt{a+b x}} d x=\frac{2}{3 b^{2}}(b x-2 a) \sqrt{a+b x}+C
$$

Differentate the right-hand side. The constant goes away, and the product rule yields

$$
\frac{2}{3 b^{2}}\left[b \sqrt{a+b x}+(b x-2 a) \frac{1}{2 \sqrt{a+b x}} b\right]
$$

Let us factor $\frac{b}{\sqrt{a+b x}}$ out of the brackets

$$
\frac{2}{3 b^{2}}\left[\frac{b}{\sqrt{a+b x}}\right][a+b x+(b x-2 a) / 2]
$$

Simplify:

$$
\frac{2}{3 b^{2}}\left[\frac{b}{\sqrt{a+b x}}\right][3 b x / 2]=\frac{x}{\sqrt{a+b x}}
$$

And we're done.
53. If oil leaks from a tank at a rank of $r(t)$ gallons per minute, then $\int_{0}^{120} r(t) d t$ is the total amount of oil, in gallons, that leaks from the tank in the two hour period from $t=0$ to $t=120$.
54. A honeybee population starts with 100 bees and increases at a rate of $n^{\prime}(t)$ bees per week. Then $100+\int_{0}^{15} n^{\prime}(t) d t$ represents the honeybee population 15 weeks after the start.

Lecture 22: Sections 6.2 and 7.1

61. We slice the torus horizontally into washers. The cross-section of the torus is a circle whose equation is $(x-R)^{2}+y^{2}=r^{2}$. Using y as the parameter, the washers have inner and outer radii given by

$$
x=R \pm \sqrt{r^{2}-y^{2}}
$$

The volume is therefore

$$
V=\int_{-r}^{r} \pi\left[\left(R+\sqrt{r^{2}-y^{2}}\right)^{2}-\left(R-\sqrt{r^{2}-y^{2}}\right)^{2}\right] d y
$$

Let us simplify the expression inside the brackets

$$
\begin{gathered}
\left(R+\sqrt{r^{2}-y^{2}}\right)^{2}-\left(R-\sqrt{r^{2}-y^{2}}\right)^{2} \\
=R^{2}+2 R \sqrt{r^{2}-y^{2}}+\left(r^{2}-y^{2}\right)-R^{2}+2 R \sqrt{r^{2}-y^{2}}-\left(r^{2}-y^{2}\right)=4 R \sqrt{r^{2}-y^{2}}
\end{gathered}
$$

Thus

$$
V=\int_{-r}^{r} 4 \pi R \sqrt{r^{2}-y^{2}} d y=4 \pi R \int_{-r}^{r} \sqrt{r^{2}-y^{2}} d y
$$

The last integral is an expression for the area of the semicircle bounded by $x^{2}+y^{2}=r^{2}$ and the y-axis. Thus it equals $\frac{1}{2} \pi r^{2}$. So finally

$$
V=4 \pi R\left(\frac{1}{2} \pi r^{2}\right)=2 \pi^{2} R r^{2}
$$

67. The velocity is given by $v(t)=t^{2} e^{-t}$. To find the position, we need to integrate this, and we use integration by parts.

$$
\int t^{2} e^{-t} d t=t^{2}\left(-e^{-t}\right)-\int 2 t\left(-e^{-t}\right) d t=-t^{2} e^{-t}+2 \int t e^{-t} d t
$$

Using parts again

$$
\int t e^{-t} d t=t\left(-e^{-t}\right)-\int\left(-e^{-t}\right) d t=-t e^{-t}-e^{-t}
$$

Putting it together

$$
\int v(t) d t=-t^{2} e^{-t}+2\left[-t e^{-t}-e^{-t}\right]+C=-t^{2} e^{-t}-2 t e^{-t}-2 e^{-t}+C
$$

The problem asks how for the particle travels in the first t seconds. This is the definite integral

$$
\int_{0}^{t} v\left(t^{\prime}\right) d t^{\prime}=\left[-\left(t^{\prime}\right)^{2} e^{-t^{\prime}}-2 t^{\prime} e^{-t^{\prime}}-2 e^{-t^{\prime}}\right]_{0}^{t}=-t^{2} e^{-t}-2 t e^{-t}-2 e^{-t}+2
$$

70. (a) We use integration by parts with $u=f(x)$ and $d v=1 d x$. Thus $d u=$ $f^{\prime}(x) d x$ and $v=x$.

$$
\int f(x) d x=x f(x)-\int x f^{\prime}(x) d x
$$

(b) Now we consider inverse functions f and g. We make the substitution $y=f(x)$ in the second integral. Thus $x=g(y)$ and $d y=f^{\prime}(x) d x$. So $\int x f^{\prime}(x) d x=\int g(y) d y$. If the limits of integration are $x=a$ to $x=b$, we must integrate from $y=f(a)$ to $y=f(b)$. Combining this with the previous part, we obtain

$$
\int_{a}^{b} f(x) d x=[x f(x)]_{a}^{b}-\int_{a}^{b} x f^{\prime}(x) d x=b f(b)-a f(a)-\int_{f(a)}^{f(b)} g(y) d y
$$

(c) Here is a figure illustrating the identity in terms of areas:

(d) We evaluate $\int_{1}^{e} \ln x d x$. Here $f(x)=\ln x$ and $g(y)=e^{y} . f(1)=0$ and $f(e)=1$.

$$
\int_{1}^{e} \ln x d x=e \cdot 1-1 \cdot 0-\int_{0}^{1} e^{y} d y=e-\left[e^{y}\right]_{0}^{1}=e-(e-1)=1
$$

Lecture 23: Sections 7.1 and 7.2

48. (a) To prove the reduction formula, start with $\int \cos ^{n} x d x$, and integrate by parts with $u=\cos ^{n-1} x$ and $d v=\cos x d x$. Then $d u=-(n-1) \cos ^{n-2} x \sin x d x$, and $v=\sin x$. We obtain

$$
\int \cos ^{n} x d x=\cos ^{n-1} x \sin x+(n-1) \int \cos ^{n-2} x \sin x \sin x d x
$$

Using $\sin ^{2} x=1-\cos ^{2} x$ we get

$$
\int \cos ^{n} x d x=\cos ^{n-1} x \sin x+(n-1) \int \cos ^{n-2} x\left(1-\cos ^{2} x\right) d x
$$

$$
\int \cos ^{n} x d x=\cos ^{n-1} x \sin x+(n-1) \int \cos ^{n-2} x d x-(n-1) \int \cos ^{n} x d x
$$

Putting the last term over on the left-hand side gives

$$
n \int \cos ^{n} x d x=\cos ^{n-1} x \sin x+(n-1) \int \cos ^{n-2} x d x
$$

And finally

$$
\int \cos ^{n} x d x=\frac{1}{n} \cos ^{n-1} x \sin x+\frac{n-1}{n} \int \cos ^{n-2} x d x
$$

(b) We apply the formula for $n=2$, using the fact that $\cos ^{0} x=1$.

$$
\int \cos ^{2} x d x=\frac{1}{2} \cos x \sin x+\frac{1}{2} \int 1 d x=\frac{1}{2} \cos x \sin x+\frac{1}{2} x+C
$$

(c) We apply the formula for $n=4$.

$$
\int \cos ^{4} x d x=\frac{1}{4} \cos ^{3} x \sin x+\frac{3}{4} \int \cos ^{2} x d x
$$

Using the result of part (b),

$$
\begin{gathered}
\int \cos ^{4} x d x=\frac{1}{4} \cos ^{3} x \sin x+\frac{3}{4}\left[\frac{1}{2} \cos x \sin x+\frac{1}{2} x\right]+C \\
\int \cos ^{4} x d x=\frac{1}{4} \cos ^{3} x \sin x+\frac{3}{8} \cos x \sin x+\frac{3}{8} x+C
\end{gathered}
$$

67. To prove this formula, we can observe that $\sin m x \cos n x$ is an odd function of x. Therefore its integral over the symmetric interval $-\pi$ to π must be zero. More computationally, we can use the product-to-sum formula on page 476.

$$
\sin m x \cos n x=\frac{1}{2}[\sin (m x-n x)+\sin (m x+n x)]
$$

Thus

$$
\int_{-\pi}^{\pi} \sin m x \cos n x d x=\frac{1}{2} \int_{-\pi}^{\pi}\{\sin [(m-n) x]+\sin [(m+n) x]\} d x
$$

As long as neither $m-n$ nor $m+n$ equals zero, we get

$$
\frac{1}{2}\left[\frac{-\cos [(m-n) x]}{m-n}+\frac{-\cos [(m+n) x]}{m+n}\right]_{-\pi}^{\pi}
$$

This equals zero because $\cos [(m-n) x]$ and $\cos [(m+n) x]$ are even functions, and so have the same values at $-\pi$ and π. If $m-n$ equals zero, then the first term is simply not present, as $\sin [0 x]=0$. Similarly, if $m+n$ equals zero, the the second term is not present. In all cases, the integral is zero.
68. The calculation is very similar to the previous problem.

$$
\int_{-\pi}^{\pi} \sin m x \sin n x d x=\frac{1}{2} \int_{-\pi}^{\pi}\{\cos [(m-n) x]-\cos [(m+n) x]\} d x
$$

If neither $m-n$ nor $m+n$ equals zero, we get

$$
\frac{1}{2}\left[\frac{\sin [(m-n) x]}{m-n}-\frac{\sin [(m+n) x]}{m+n}\right]_{-\pi}^{\pi}
$$

This will always be zero because the value of sine at any integer multiple of π is zero.
In the statement of the problem we are to assume that m and n are positive integers, so we can ignore the possibility that $m+n$ could be zero (as then either m or n would be negative).

It remains to consider what happens if $m-n$ is zero, that is, if $m=n$. Then the term $\cos [(m-n) x]=\cos [0 x]=1$ in the integral reduces to a nonzero constant. We integrate this to

$$
\frac{1}{2}\left[x-\frac{\sin [(m+n) x]}{m+n}\right]_{-\pi}^{\pi}=\frac{1}{2}[\pi-(-\pi)]=\pi
$$

We conclude that for positive integers m and n, the integral is zero unless $m=n$, in which case it is π.
69. This is entirely analogous to the preceding problem. The only difference is that there is a plus sign between the two terms after we apply the product-to-sum formula.

Lecture 24: Section 7.3

37. We consider the region bounded by $y=9 /\left(x^{2}+9\right), y=0, x=0$ and $x=3$. We want to find the volume of the solid of rotation about the x-axis. We slice the solid vertically into disks, each with area $\pi\left(9 /\left(x^{2}+9\right)\right)^{2}$ and thickness $d x$. Thus

$$
V=\int_{0}^{3} \pi \frac{9^{2}}{\left(x^{2}+9\right)^{2}} d x=81 \pi \int_{0}^{3} \frac{1}{\left(x^{2}+9\right)^{2}} d x
$$

We use the substitution $x=3 \tan \theta$. Then $x^{2}+9=9 \tan ^{2} \theta+9=9 \sec ^{2} \theta$, and $d x=3 \sec ^{2} \theta d \theta$. We also convert the limits of integration: as θ goes from 0 to $\pi / 4, \tan \theta$ covers exactly the interval from 0 to 1 , and $x=3 \theta$ covers the interval from 0 to 3 . Thus we convert the integral to

$$
V=81 \pi \int_{0}^{\pi / 4} \frac{3 \sec ^{2} \theta d \theta}{\left(9 \sec ^{2} \theta\right)^{2}}=81 \pi \int_{0}^{\pi / 4} \frac{3}{81} \cos ^{2} \theta d \theta=3 \pi \int_{0}^{\pi / 4} \cos ^{2} \theta d \theta
$$

Now we use $\cos ^{2} \theta=\frac{1}{2}(1+\cos 2 \theta)$, so we get

$$
V=3 \pi\left[\frac{1}{2} \theta+\frac{1}{4} \sin 2 \theta\right]_{0}^{\pi / 4}=3 \pi\left[\frac{\pi}{8}+\frac{1}{4} \sin (\pi / 2)\right]=3 \pi\left[\frac{\pi}{8}+\frac{1}{4}\right]=\frac{3 \pi^{2}}{8}+\frac{3 \pi}{4}
$$

39. (a) We apply the substitution $t=a \sin \theta, d t=a \cos \theta d \theta$:

$$
\int \sqrt{a^{2}-t^{2}} d t=\int \sqrt{a^{2}-a^{2} \sin ^{2} \theta} a \cos \theta d \theta=\int a^{2} \cos ^{2} \theta d \theta
$$

The original limits of integration are $t=0$ to $t=x$. This becomes $\theta=0$ to $\theta=\sin ^{-1}(x / a)$.

$$
\int_{0}^{x} \sqrt{a^{2}-t^{2}} d t=\int_{0}^{\sin ^{-1}(x / a)} a^{2} \cos ^{2} \theta d \theta=a^{2}\left[\frac{1}{2} \theta+\frac{1}{4} \sin 2 \theta\right]_{0}^{\sin ^{-1}(x / a)}
$$

So we obtain

$$
\frac{1}{2} a^{2} \sin ^{-1}(x / a)+\frac{1}{4} a^{2} \sin \left(2 \sin ^{-1}(x / a)\right)
$$

We can write

$$
\sin \left(2 \sin ^{-1}(x / a)\right)=2 \sin \left(\sin ^{-1}(x / a)\right) \cos \left(\sin ^{-1}(x / a)\right)=2(x / a) \sqrt{1-(x / a)^{2}}
$$

Now we can put this into the prevous result and simplify to get

$$
\frac{1}{4} a^{2} \sin \left(2 \sin ^{-1}(x / a)\right)=\frac{1}{4} a^{2} 2(x / a) \sqrt{1-(x / a)^{2}}=\frac{1}{2} x \sqrt{a^{2}-x^{2}}
$$

Putting it all together, we have

$$
\int_{0}^{x} \sqrt{a^{2}-t^{2}} d t=\frac{1}{2} a^{2} \sin ^{-1}(x / a)+\frac{1}{2} x \sqrt{a^{2}-x^{2}}
$$

(b) The figure shows the portion of the circle of radius a sitting over the interval from 0 to x. The integral $\int_{0}^{x} \sqrt{a^{2}-t^{2}} d t$ equals A, the area underneath this curve. The figure shows that this area divided into two parts, a circular sector of angle θ, and a triangle whose vertices are (0,0), ($x, 0$) and $\left(x, \sqrt{a^{2}-x^{2}}\right)$. The area of a circular sector is one-half radius-squared times angle, while the area of a triangle is one-half base times height. Thus

$$
A=\frac{1}{2} a^{2} \theta+\frac{1}{2} x \sqrt{a^{2}-x^{2}}
$$

The figure also shows that $\sin \theta=x / a$, so $\theta=\sin ^{-1}(x / a)$. Thus we have shown geometrically that

$$
\int_{0}^{x} \sqrt{a^{2}-t^{2}} d t=A=\frac{1}{2} a^{2} \sin ^{-1}(x / a)+\frac{1}{2} x \sqrt{a^{2}-x^{2}}
$$

40. The parabola $y=\frac{1}{2} x^{2}$ divides the disk $x^{2}+y^{2} \leq 8$ into two parts. Let us first compute the area of the smaller part which lies above the parabola. The two curves intersect when $y=\frac{1}{2} x^{2}$ and $x^{2}+y^{2}=8$, thus $2 y+y^{2}=8$. The solutions of the equation $y^{2}+2 y-8=0$ are

$$
y=\frac{-2 \pm \sqrt{2^{2}-4(-8)}}{2}=\frac{-2 \pm \sqrt{36}}{2}=-1 \pm 3
$$

As $y=\frac{1}{2} x^{2}$ must be positive, the negative solution is spurious, and we have $y=2$. Thus $x^{2}=4$, and $x= \pm 2$. The area above the parabola and below the circle is given by the integral

$$
A=\int_{-2}^{2}\left(\sqrt{8-x^{2}}-\frac{1}{2} x^{2}\right) d x=\int_{-2}^{2} \sqrt{8-x^{2}} d x-\int_{-2}^{2} \frac{1}{2} x^{2} d x
$$

To calculate the first integral, we can use the fact that the integrand is an even function, and the result of the previous problem with $a=\sqrt{8}=2 \sqrt{2}$.

$$
\begin{gathered}
\int_{-2}^{2} \sqrt{8-x^{2}} d x=2 \int_{0}^{2} \sqrt{8-x^{2}} d x=2\left[\frac{1}{2} 8 \sin ^{-1}(2 /(2 \sqrt{2}))+\frac{1}{2} 2 \sqrt{8-2^{2}}\right] \\
=8 \sin ^{-1}(1 / \sqrt{2})+2 \sqrt{2}=8(\pi / 4)+2 \sqrt{2}=2 \pi+2 \sqrt{2}
\end{gathered}
$$

The second integral is straight-forward.

$$
\int_{-2}^{2} \frac{1}{2} x^{2} d x=2 \int_{0}^{2} \frac{1}{2} x^{2} d x=\left[\frac{x^{3}}{3}\right]_{0}^{2}=\frac{8}{3}
$$

The total are of this part is

$$
A=2 \pi+2 \sqrt{2}-\frac{8}{3}
$$

The other part of the disk that is below the parabola has complementary area. Since the total area of the disk is 8π, this part must have area

$$
8 \pi-(2 \pi+2 \sqrt{2}-8 / 3)=6 \pi-2 \sqrt{2}+\frac{8}{3}
$$

Lecture 25: Section 7.4

59. (a) We set $t=\tan (x / 2)$ for $-\pi<x<\pi$. We draw a right triangle with angle $x / 2$, adjacent leg 1 , opposite leg t, and hypotenuse $\sqrt{1+t^{2}}$. Then we have

$$
\cos (x / 2)=\frac{1}{\sqrt{1+t^{2}}}, \quad \sin (x / 2)=\frac{t}{\sqrt{1+t^{2}}}
$$

These expressions have the right sign for $-\pi<x<\pi$, since we have $\cos (x / 2)$ positive in this range.
(b) We use the double angle formulas.

$$
\begin{aligned}
& \cos x=\cos ^{2}(x / 2)-\sin ^{2}(x / 2)=\frac{1}{1+t^{2}}-\frac{t^{2}}{1+t^{2}}=\frac{1-t^{2}}{1+t^{2}} \\
& \sin x=2 \sin (x / 2) \cos (x / 2)=2 \frac{t}{\sqrt{1+t^{2}}} \frac{1}{\sqrt{1+t^{2}}}=\frac{2 t}{1+t^{2}}
\end{aligned}
$$

(c) Solving $t=\tan (x / 2)$ for x gives $x=2 \tan ^{-1} t$. Thus

$$
d x=\frac{2}{1+t^{2}} d t
$$

60. We apply the substitution from the previous problem

$$
\begin{gathered}
\int \frac{d x}{1-\cos x}=\int \frac{1}{1-\frac{1-t^{2}}{1+t^{2}}} \frac{2}{1+t^{2}} d t=\int \frac{2}{\left(1+t^{2}\right)-\left(1-t^{2}\right)} d t=\int \frac{2}{2 t^{2}} d t \\
=\int t^{-2} d t=-t^{-1}+C=-(\tan (x / 2))^{-1}+C=-\cot (x / 2)+C
\end{gathered}
$$

