M 408C Exam 1 Free Response (version A)

October 1, 2013
Instructor: James Pascaleff
name solutions
EID:

INSTRUCTIONS:

- No books, notes, calculators, or other electronic devices. Do not look at anyone else's paper during the test.
- You must show your work to recieve full credit. No credit will be awarded for a mere numerical answer, even if the number is correct.
- Only answers written on these sheets will be graded. Work written on scratch paper will not be considered.

FOR OFFICIAL USE ONLY:

Problem	Possible	Actual
1	25	
2	25	
Total	50	

1. (25 points) Using the properties of limits that we have discussed in class, determine the limit

$$
\lim _{x \rightarrow 0} \frac{e^{2 x}+e^{x}-2}{e^{2 x}-1}
$$

To recieve full credit, you must show the steps that you use to arrive at your answer.
Warning: No credit will be awarded for a solution using L'Hopital's rule.
Hint: Let $z=e^{x}$. Then $e^{2 x}=z^{2}$. Try to simplify.

$$
\begin{aligned}
& \frac{e^{2 x}+e^{x}-2}{e^{2 x}-1}=\frac{z^{2}+z-2}{z^{2}-1}=\frac{(z-1)(z+2)}{(z-1)(z+1)} \\
& =\frac{z+2}{z+1}=\frac{e^{x}+2}{e^{x}+1} \quad(\text { as long as } x \neq 0) \\
& \lim _{x \rightarrow 0} \frac{e^{2 x}+e^{x}-2}{e^{x}-1}=\lim _{x \rightarrow 0} \frac{e^{x}+2}{e^{x}+1}=\frac{e^{0}+2}{e^{0}+1}=\frac{1+2}{1+1}=\frac{3}{2}
\end{aligned}
$$

Could also say, as $x \rightarrow 0, z=e^{x} \rightarrow e^{0}=1$
thus $\lim _{x \rightarrow 0} \frac{e^{2 x}+e^{x}-2}{e^{2 x}-1}=\lim _{z \rightarrow 1} \frac{z^{2}+z-2}{z^{2}-1}$

$$
=\lim _{z \rightarrow 1} \frac{(z-1)(z+2)}{(z-1)(z+1)}=\lim _{z \rightarrow 1} \frac{z+2}{z+1}=\frac{1+2}{1+1}=\frac{3}{2}
$$

2. (25 points total)
(a) (12 points) Consider three functions $f(x), g(x)$ and $h(x)$. By combining the product rule and the quotient rule, find a rule for the derivative of $F=f /(g h)$. That is, express

$$
F^{\prime}=\left(\frac{f}{g h}\right)^{\prime}
$$

in terms of $f, g, h, f^{\prime}, g^{\prime}$, and h^{\prime}. Show the steps in your argument.

$$
\begin{aligned}
F^{\prime}=\left(\frac{f}{g h}\right)^{\prime} & =\frac{g h f^{\prime}-f(g h)^{\prime}}{(g h)^{2}} \quad \text { Quotient mule } \\
& =\frac{g h f^{\prime}-f\left(g^{\prime} h+g h^{\prime}\right)}{(g h)^{2}} \begin{array}{l}
\text { product } \\
\text { rule opplad } \\
\text { to }(g h)^{\prime}
\end{array}
\end{aligned}
$$

Alternative: let $u=g h$
then $F=\frac{f}{u}$

$$
\begin{aligned}
& F^{\prime}=\left(\frac{f}{u}\right)^{\prime}=\frac{u f^{\prime}-f u^{\prime}}{u^{2}} \quad \text { Quotient mince } \\
& \text { And, } u^{\prime}=(g h)^{\prime}=g^{\prime h}+g h^{\prime} \quad \text { by product cole } \\
& \text { so } F^{\prime}=\frac{g h f^{\prime}-f\left(g^{\prime} h+g h^{\prime}\right)}{(g h)^{2}}
\end{aligned}
$$

(b) (13 points) Use this formula to compute $F^{\prime}(0)$ in the situation where f, g and h are the specific functions

$$
\begin{aligned}
& f(x)=\sin x+\cos x \\
& g(x)=e^{x} \\
& h(x)=\left(1+x^{2}\right)
\end{aligned}
$$

Please note that you are not required to compute $F^{\prime}(x)$ as a function of x, you just need to compute $F^{\prime}(0)$.

$$
\begin{array}{rlrl}
f(0) & =1 & f^{\prime}(x)=\cos x-\sin x & f^{\prime}(0)=1 \\
g(0)=1 & g^{\prime}(x)=e^{x} & g^{\prime}(0)=1 \\
h(0) & =\frac{h^{\prime}(0)=0}{[g(0) h(0)]^{2}} \\
F^{\prime}(0) & =\frac{g(0) h(0) f^{\prime}(0)-f(0)\left[g^{\prime}(0) h(0)+g(0) h^{\prime}(0)\right]}{(1 \cdot 1)^{2}} \\
& =\frac{1 \cdot 1 \cdot 1-1 \cdot[1 \cdot 1+1 \cdot 0]}{1}=\frac{1-1}{1}=0
\end{array}
$$

