M 427K Quiz $8 \quad$ October 31, 2012

- Show all work. No books, notes, calculators, or other electronic devices.

1. (5 points) Find the inverse Laplace transform of

$$
\begin{equation*}
F(s)=\frac{2 s-3}{s^{2}-4} \tag{1}
\end{equation*}
$$

Partial fractions: $s^{2}-4=(s-2)(s+2)$

$$
\begin{aligned}
& \frac{2 s-3}{(s-2)(s-2)}=\frac{A}{s-2}+\frac{B}{s+2} \leadsto 2 s-3=A(s+2)+B(s-2) \\
& \text { chg in } s=-2: \quad-4-3=B(-4) \\
& B=\frac{7}{4} \\
& \text { plain } s=2: \quad 4-3=A(4) \quad \Delta=1 / 4 \\
& f(t)=A e^{2 t}+B e^{-2 t}=\frac{1}{4} e^{2 t}+\frac{7}{4} e^{-2 t} \text { oR } F(s)=2\left(\frac{s}{s^{2}-4}\right)-\frac{3}{2}\left(\frac{2}{s^{2}-4}\right) \\
& f(t)=2 \cosh (2 t)-\frac{3}{2} \sinh (2 t) \\
& \text { 2. (5 points) Consider the initial value problem }
\end{aligned}
$$

$$
\begin{equation*}
y^{\prime \prime}-2 y^{\prime}+2 y=\cos t, \quad y(0)=1, \quad y^{\prime}(0)=0 \tag{2}
\end{equation*}
$$

Solve for the Laplace transform $Y(s)=\mathcal{L}\{y(t)\}$ of the solution to the problem. Your answer should be a function of s. You do not need to take the inverse transform.

$$
\begin{aligned}
& Z\left\{y^{\prime}\right\}=s y(s)-y(0)=s Y(s)-1 \\
& z\left\{y^{\prime \prime}\right\}=s^{2} Y(s)-s y(0)-y^{\prime}(0)=s^{2} Y(s)-s \\
& Z\{\cos \}\}=\frac{s}{s^{2}+1} \\
& s^{2} Y(s)-s-2(s y(s)-1)+2 Y(s)=\frac{s}{s^{2}+1} \\
& \left(s^{2}-2 s+2\right) Y(s)-s+2=\frac{s}{s^{2}+1} \\
& Y(s)=\frac{1}{s^{2}-2 s+2}\left(s-2+\frac{s}{s^{2}+1}\right.
\end{aligned}
$$

