M 427K Quiz 7
October 24, 2012
Instructor: James Pascaleff

- Show all work. No books, notes, calculators, or other electronic devices.

This problem is about power series solutions centered at $x_{0}=0$ of the differential equation

$$
\begin{equation*}
(1-x) y^{\prime \prime}+y=0 \tag{1}
\end{equation*}
$$

1. (7 points) Seek a power series solution centered at $x_{0}=0$, and find the recurrence relation for the coefficients.

$$
\begin{gathered}
y=\sum_{n=0}^{\infty} a_{n} x^{n} \quad y^{\prime \prime}=\sum_{n=0}^{\infty} n(n-1) a_{n} x^{n-2} \\
(1-x) y^{\prime \prime}=y^{\prime \prime}-x y^{\prime \prime}=\sum_{n=0}^{\infty} n(n-1) a_{n} x^{n-2}-\sum_{n=0}^{\infty} n(n-1) a_{n} x^{n-1} \\
=\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}-\sum_{n=0}^{\infty}(n+1) n a_{n+1} x^{n} \\
0=(1-x) y^{\prime \prime}+y=\sum_{n=0}^{\infty}\left[(n+2)(n+1) a_{n+2}-(n+1) n a_{n+1}+a_{n}\right] x^{n} \\
\Rightarrow(n+2)(n+1) a_{n+2}-(n+1) n a_{n+1}+a_{n}=0 \Rightarrow a_{n+2}=\frac{n}{n+2} a_{n+1}-\frac{a_{n}}{(n+2)(n+1)}
\end{gathered}
$$

2. (3 points) Given the initial conditions $a_{0}=1, a_{1}=0$, determine the first four terms of the solution (up to and including the x^{3} term).

$$
\begin{aligned}
& n=0: a_{2}=\frac{0}{2} a_{1}-\frac{a_{0}}{2 \cdot 1}=-\frac{1}{2} \\
& n=1: a_{3}=\frac{1}{3} a_{2}-\frac{a_{1}}{3 \cdot 2}=\frac{1}{3} \cdot\left(-\frac{1}{2}\right)-\frac{0}{6}=-\frac{1}{6} \\
& y=1+0 \cdot x-\frac{1}{2} x^{2}-\frac{1}{6} x^{3}+\cdots=1-\frac{1}{2} x^{2}-\frac{1}{6} x^{3}+\cdots
\end{aligned}
$$

