name \& eld: Solutions

M 427K Quiz 6
October 16, 2012
Instructor: James Pascaleff

- Show all work.
- No books, notes, calculators, or other electronic devices.

1. (7 points) Determine the radius of convergence of the power series

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{(-1)^{n} n^{2}(x+2)^{n}}{3^{n}} \\
& L=\lim _{n \rightarrow \infty}\left|\frac{(-)^{n+1}(n+1)^{2}(x+2)^{2 n+1}}{3^{n+1}}\right| /\left|\frac{(-1)^{n} n^{2}(x+2)^{n}}{3^{n}}\right| \\
& =\lim _{n \rightarrow \infty} \frac{(n+1)^{2}}{n^{2}} \frac{1}{3}|x+2|=\frac{1}{3}|x+2| \lim _{n \rightarrow \infty} \frac{(n+1)^{2}}{n^{2}} \\
& \text { Now } \lim _{n \rightarrow \infty} \frac{(n+1)^{2}}{n^{2}}=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{2}=1^{2}=1 \text {, so } L=\frac{1}{3}|x+2| \text {. } \\
& \text { converges when } L=\frac{1}{3}|x+2|<1 \text {, meaning }|x+2|<3
\end{aligned}
$$ So radius of convergence $=3$.

2. (3 points) Rewrite this series as a series whose generic term involves x^{n}

$$
\begin{equation*}
\sum_{n=0}^{\infty} a_{n} x^{n+2} \tag{2}
\end{equation*}
$$

$$
\text { Answer: } \sum_{n=2}^{\infty} a_{n-2} x^{n}
$$

Done Carefully:

$$
\sum_{n=0}^{\infty} a_{n} x^{n+2}=\begin{aligned}
& k=n+2 \\
& n=k-2
\end{aligned}
$$

$$
\sum_{k=2}^{\infty} a_{k-2} x^{k}=\sum_{n=2}^{\infty} a_{n-2} x^{n}
$$

