name \& em: Solutions
M 427K Quiz 4
September 26, 2012

- Show all work.
- No books, notes, calculators, or other electronic devices.

This problem is about the second order linear homogeneous ordinary differential equation

$$
\begin{equation*}
y^{\prime \prime}+y^{\prime}-2 y=0 \tag{1}
\end{equation*}
$$

1. (4 points) Write down the characteristic equation and find its solutions.

$$
\begin{aligned}
& r^{2}+r-2=0 \\
& r=\frac{-1 \pm \sqrt{1^{2}-4 \cdot 1 \cdot(-2)}}{2 \cdot 1}=\frac{-1 \pm \sqrt{9}}{2}=\frac{-1 \pm 3}{2} \\
& r_{1}=\frac{-1+3}{2}=1 \quad r_{2}=\frac{-1-3}{2}=-2
\end{aligned}
$$

2. (3 points) Write down the general solution of the differential equation.

$$
y=c_{1} e^{t}+c_{2} e^{-2 t}
$$

3. (3 points) Solve the initial value problem $y(0)=1, y^{\prime}(0)=1$.

$$
\begin{aligned}
& y^{\prime}=c_{1} e^{t}-2 c_{2} e^{-2 t} \\
& \left\{\begin{array}{l}
y(0)=c_{1}+c_{2}=1 \\
y^{\prime}(0)=c_{1}-2 c_{2}=1
\end{array} \quad \begin{array}{l}
c_{1}=1+2 c_{2} \\
\downarrow \\
\forall c_{2}=0 \rightarrow c_{2}=0
\end{array}\right. \\
& y(t)=e^{t} \\
& \text { so }\left\{\begin{array}{l}
c_{1}=1 \\
c_{2}=0
\end{array}\right.
\end{aligned}
$$

