name \& id: Solutions

M 427K Quiz 2
September 12, 2012

- Show all work.
- No books, notes, calculators, or other electronic devices.

1. (5 points) Consider the first order linear ODE

$$
\begin{equation*}
\frac{d y}{d t}+2 t y=2 t e^{-t^{2}} \tag{1}
\end{equation*}
$$

Find an integrating factor for this equation, that is, a function $u(t)$ such that

$$
\begin{equation*}
\frac{d}{d t}[u(t) y]=u(t) \frac{d y}{d t}+u^{\prime}(t) y=u(t)\left[\frac{d y}{d t}+2 t y\right] \tag{2}
\end{equation*}
$$

If you remember the formula for $u(t)$, you don't need to rederive it.

$$
\begin{aligned}
& u(t)=e^{\int p(t) d t} \text {, where } p(t)=2 t . \\
& \int 2+d t=t^{2} \\
& \text { so } u(t)=e^{t^{2}}
\end{aligned}
$$

2. (5 points) Multiply the equation by $u(t)$ and proceed to solve it. Your solution should involve an undetermined constant.

$$
\begin{gathered}
e^{t^{2}} y^{\prime}+2 t e^{t^{2}} y=2 t e^{-t^{2}} e^{t^{2}}=2 t \\
\left(e^{t^{2}} y\right)^{\prime}=2 t \\
e^{t^{2}} y=\int 2+d t=t^{2}+c \\
y=e^{-t^{2}}\left(t^{2}+c\right)
\end{gathered}
$$

