NAME \& ETD:

M 427K Quiz 11
December 5, 2012
Instructor: James Pascaleff

- Show all work. No books, notes, calculators, or other electronic devices.

1. (10 points) Find the solution to the heat conduction problem

$$
\frac{\partial u}{\partial t}=100 \frac{\partial^{2} u}{\partial x^{2}}
$$

On the interval $0<x<1$, with boundary conditions $u(0, t)=0, u(1, t)=0$, and initial temperature distribution

$$
\text { General solution } u(x, t)=\sum_{n=1}^{u(x, 0)} C_{n} e^{-n^{2} \pi^{2} \alpha^{2} t / L^{2}} \sin \frac{n \pi x}{L}
$$

Here $L=1$ and $\alpha^{2}=100$

$$
\begin{aligned}
& L=1 \text { and } \alpha^{2}=100 \\
& u(x, t)=\sum_{n=1}^{\infty} c_{n} e^{-n^{2} \pi^{2} 100 t} \sin n \pi x
\end{aligned}
$$

$$
u(x, 0)=\sum_{n=1}^{\infty} c_{n} \sin n \pi x \stackrel{?}{=} \sin 2 \pi x-\sin 5 \pi x
$$

Thus ne hove $c_{2}=1, c_{5}=-1$ and all other $c_{n}=0$. so solution is

$$
\begin{aligned}
& \text { so solution is } \\
& u(x, t)=e^{-2^{2} \pi^{2} 100 t} \sin 2 \pi x-e^{-5^{2} \pi^{2} 100 t} \sin 5 \pi x \\
&=e^{-400 \pi^{2} t} \sin 2 \pi x-e^{-2500 \pi^{2} t} \sin 5 \pi x .
\end{aligned}
$$

