EID:

M 427K Exam 2 Version B November 13, 2012 Instructor: James Pascaleff

INSTRUCTIONS:

- Do all work on these sheets.
- $\bullet\,$ Show all work.
- No books, notes, calculators, or other electronic devices.

Problem	Possible	Actual
1	10	
2	7	
3	20	
4	10	
5	5	
6	15	
7	18	
8	15	
Total	100	

HIGHER ORDER EQUATIONS

1. (10 points) Find the general solution of the fourth order equation

$$y^{(4)} - 5y'' + 6y = 0$$

Power series

2. (7 points) Find the radius of convergence of the series

$$\sum_{n=0}^{\infty} \frac{2^n x^n}{n!}$$

3. (20 points) Seek a power series solution of the following equation at the point $x_0 = 0$:

$$y'' + 2xy' + y = 0$$

Find the recurrence relation, and determine the terms, up to the x^3 term, of the solution that begins with $a_0 = 0$, $a_1 = 1$.

4. (10 points) The following two equations have a singular point at $x_0 = 0$. One of them has a regular singular point, while the other has an irregular singular point.

Equation (A)
$$x^2y'' + 3xy' + 5y = 0$$

Equation (B)
$$x^2y'' + 2y' + y = 0$$

- (a) (4 points) Which equation has a regular singularity, and which has an irregular singularity? Circle your answer below.
 - (A) is regular, and (B) is irregular. OR (B) is regular, and (A) is irregular.
- (b) (6 points) Justify your answer to the previous part using limits.

LAPLACE TRANSFORM

- 5. (5 points) Write the definition of the Laplace transform of a function f(t).
- 6. (15 points, 5 points per part) Here are some functions of s. Find their inverse Laplace transforms. The answer may have discontinuities or delta functions in it.

(a)
$$F(s) = \frac{2s-3}{s^2+2s+10}$$

(b)
$$F(s) = \frac{s(e^{-s} - e^{-2s})}{s^2 + 9}$$

(c)
$$F(s) = \frac{6G(s)}{s^4}$$

(c) $F(s) = \frac{6G(s)}{s^4}$ For this part, $G(s) = \mathcal{L}\{g(t)\}$, and your answer will be in terms of g(t).

7. (18 points, 6 points per part) A mass on a spring with mass m=4, damping $\gamma=2$, spring constant k=2, and subject to an external force g(t) obeys the differential equation

$$4y'' + 2y' + 2y = g(t)$$

We impose the initial conditions y(0) = 2, y'(0) = -1. In each of the scenarios below, solve for Y(s), the Laplace transform of y(t). Do not take the inverse transform of your answer.

(a) First scenario: No forcing, g(t) = 0.

(b) Second scenario: The forcing function g(t) consists of three delta–function impulses at times $t=\pi,\,t=2\pi,$ and $t=3\pi$:

$$g(t) = \delta(t - \pi) + \delta(t - 2\pi) + \delta(t - 3\pi)$$

(c) Third scenario: The forcing function g(t) is zero up until time $t = \pi$, at which time it switches on to $\sin(t - \pi)$, or in symbols:

$$g(t) = \begin{cases} 0 & \text{if } t < \pi \\ \sin(t - \pi) & \text{if } t \ge \pi \end{cases}$$

FIRST ORDER SYSTEMS

8. (15 points) Find the eigenvalues and eigenvectors of the matrix \mathbf{A} , and find the general solution of the system $\mathbf{x}' = \mathbf{A}\mathbf{x}$

$$\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 0 & -2 \end{pmatrix}$$