M 427K PRACTICE FOR SECOND MIDTERM EXAM

These problems are representative of the problems that will be on the second midterm exam. This list of problems is longer than the actual exam will be. All of these problems are similar to problems that were assigned for homework. A copy of the table of Laplace transforms on p. 317 of the textbook will be provided during the exam.

1. Higher order equations.
(a) Determine whether these 3 functions are linearly independent:

$$
\begin{equation*}
f_{1}(t)=2 t-3, \quad f_{2}(t)=2 t^{2}+1, \quad f_{3}(t)=3 t^{2}+t \tag{1}
\end{equation*}
$$

(b) Find the general solution of the sixth-order equation

$$
\begin{equation*}
y^{(6)}-y^{\prime \prime}=0 \tag{2}
\end{equation*}
$$

2. Power series.
(a) Find the radius of convergence of the series

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{n}{2^{n}} x^{n} \tag{3}
\end{equation*}
$$

(b) Re-index this series so that the general term involves x^{n} :

$$
\begin{equation*}
\sum_{m=2}^{\infty} m(m-1) a_{m} x^{m-2}+x \sum_{k=1}^{\infty} k a_{k} x^{k-1} \tag{4}
\end{equation*}
$$

(c) Seek a power series solution of the following equation at the point $x_{0}=0$:

$$
\begin{equation*}
\left(4-x^{2}\right) y^{\prime \prime}+2 y=0 \tag{5}
\end{equation*}
$$

Find the recurrence relation, and determine the first four terms of the solution that begins with $a_{0}=0, a_{1}=1$.
(d) Find the general solution for $x>0$ of the differential equation:

$$
\begin{equation*}
x^{2} y^{\prime \prime}-x y^{\prime}+y=0 \tag{6}
\end{equation*}
$$

Note: this equation is an Euler equation with a singular point at $x_{0}=0$.
3. Laplace transform. (A copy of the table on p. 317 of the textbook will be provided during the exam.)
(a) Write the definition of the Laplace transform of a function $f(t)$.
(b) Here are some functions of s. Find their inverse Laplace transforms. The answer may have discontinuities or delta functions in it.

$$
\begin{gather*}
F(s)=\frac{2 s+1}{s^{2}-2 s+2} \tag{7}\\
F(s)=\frac{2 e^{-2 s}}{s^{2}-4} \tag{8}\\
F(s)=\frac{e^{-s}+e^{-2 s}-2 e^{-3 s}}{s} \tag{9}
\end{gather*}
$$

(c) Suppose $F(s)$ is the Laplace transform of $f(t)$. What is the inverse transform of $\frac{F(s)}{s^{2}+1}$?
(d) For each of following equations, solve for $Y(s)=\mathcal{L}\{y(t)\}$.

$$
\begin{gather*}
y^{\prime \prime}-4 y^{\prime}+4 y=0, \quad y(0)=1, \quad y^{\prime}(0)=1 \tag{10}\\
y^{\prime \prime}-2 y^{\prime}+2 y=e^{-t}, \quad y(0)=0, \quad y^{\prime}(0)=1 \tag{11}\\
y^{\prime \prime}+4 y=u_{\pi}(t)-u_{3 \pi}(t), \quad y(0)=0, \quad y^{\prime}(0)=0 \tag{12}\\
y^{\prime \prime}+2 y^{\prime}+2 y=\delta(t-\pi), \quad y(0)=1, \quad y^{\prime}(0)=0 \tag{13}
\end{gather*}
$$

4. First order systems.
(a) Write this second order equation as a first order system of equations.

$$
\begin{equation*}
y^{\prime \prime}+2 y^{\prime}+3 y=0 \tag{14}
\end{equation*}
$$

(b) In each of these two cases, find the eigenvalues and eigenvectors of the matrix \mathbf{A}, and find the general solution of the system $\mathbf{x}^{\prime}=\mathbf{A x}$

$$
\begin{align*}
\mathbf{A} & =\left(\begin{array}{ll}
3 & -2 \\
2 & -2
\end{array}\right) \tag{15}\\
\mathbf{A} & =\left(\begin{array}{ll}
3 & -2 \\
4 & -1
\end{array}\right) \tag{16}
\end{align*}
$$

