M 427K PRACTICE FOR SECOND MIDTERM EXAM

These problems are representative of the problems that will be on the second midterm exam. This list of problems is longer than the actual exam will be. All of these problems are similar to problems that were assigned for homework. A copy of the table of Laplace transforms on p. 317 of the textbook will be provided during the exam.

1. Higher order equations.
(a) Determine whether these 3 functions are linearly independent:

$$
\begin{equation*}
f_{1}(t)=2 t-3, \quad f_{2}(t)=2 t^{2}+1, \quad f_{3}(t)=3 t^{2}+t \tag{1}
\end{equation*}
$$

Consider a linear relation between the three functions:

$$
\begin{equation*}
k_{1} f_{1}+k_{2} f_{2}+k_{3} f_{3}=0 \tag{2}
\end{equation*}
$$

Where k_{1}, k_{2}, k_{3} are constants. If the only such relation is when $k_{1}=k_{2}=k_{3}=0$, the functions are linearly independent, while if there is any other relation, they are dependent. Using the definitions of f_{1}, f_{2}, f_{3} and grouping like terms we find

$$
\begin{gather*}
k_{1}(2 t-3)+k_{2}\left(2 t^{2}+1\right)+k_{3}\left(3 t^{2}+t\right)=0 \tag{3}\\
\left(2 k_{2}+3 k_{3}\right) t^{2}+\left(2 k_{1}+k_{3}\right) t+\left(-3 k_{1}+k_{2}\right)=0 \tag{4}
\end{gather*}
$$

This equation is equivalent to the three equations

$$
\begin{align*}
2 k_{2}+3 k_{3} & =0 \tag{5}\\
2 k_{1}+k_{3} & =0 \tag{6}\\
-3 k_{1}+k_{2} & =0 \tag{7}
\end{align*}
$$

The second and third equations mean $k_{3}=-2 k_{1}$ and $k_{2}=3 k_{1}$. Plugging this into the first equation, we get $0 k_{1}=0$, so k_{1} is unconstrained. In fact $k_{1}=1, k_{2}=3$, and $k_{3}=-2$ gives a linear relation, so these three functions are not linearly independent.
(b) Find the general solution of the sixth-order equation

$$
\begin{equation*}
y^{(6)}-y^{\prime \prime}=0 \tag{8}
\end{equation*}
$$

The characteristic equation is $r^{6}-r^{2}=0$. This factors as

$$
\begin{equation*}
r^{6}-r^{2}=r^{2}\left(r^{4}-1\right)=r^{2}\left(r^{2}-1\right)\left(r^{2}+1\right)=r^{2}(r-1)(r+1)\left(r^{2}+1\right) \tag{9}
\end{equation*}
$$

The roots of the characteristic equation are a double root $r=0$, single real roots $r=1$ and $r=-1$, and a complex conjugate pair $r=i, r=-i$. The double root at 0 gives solutions $y_{1}=1$ and $y_{2}=t$, the single real roots give $y_{3}=e^{t}$ and $y_{4}=e^{-t}$, and the complex conjugate pair give $y_{5}=\cos (t)$ and $y_{6}=\sin (t)$. The general solution is

$$
\begin{equation*}
y=c_{1}+c_{2} t+c_{3} e^{t}+c_{4} e^{-t}+c_{5} \cos (t)+c_{6} \sin (t) \tag{10}
\end{equation*}
$$

2. Power series.
(a) Find the radius of convergence of the series

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{n}{2^{2}} x^{n} \tag{11}
\end{equation*}
$$

Ratio test:

$$
\begin{equation*}
L=\lim _{n \rightarrow \infty} \frac{\left|(n+1) 2^{-(n+1)} x^{n+1}\right|}{\left|n 2^{-n} x^{n}\right|}=\lim _{n \rightarrow \infty} \frac{n+1}{n} \frac{|x|}{2}=\frac{|x|}{2} \tag{12}
\end{equation*}
$$

The series converges when $L<1$, that is, $|x|<2$. So the radius of convergence is 2 .
(b) Re-index this series so that the general term involves x^{n} :

$$
\begin{equation*}
\sum_{m=2}^{\infty} m(m-1) a_{m} x^{m-2}+x \sum_{k=1}^{\infty} k a_{k} x^{k-1} \tag{13}
\end{equation*}
$$

Shift the first series by $n=m-2$, and bring the factor of x into the second series to get

$$
\begin{equation*}
\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}+\sum_{k=1}^{\infty} k a_{k} x^{k} \tag{14}
\end{equation*}
$$

Notice that in the second series, we can start the sum at $k=0$ without changing the value, since $0 a_{0} x^{0}=0$. Then just rename k to n and group the terms

$$
\begin{equation*}
\sum_{n=0}^{\infty}\left[(n+2)(n+1) a_{n+2}+n a_{n}\right] x^{n} \tag{15}
\end{equation*}
$$

(c) Seek a power series solution of the following equation at the point $x_{0}=0$:

$$
\begin{equation*}
\left(4-x^{2}\right) y^{\prime \prime}+2 y=0 \tag{16}
\end{equation*}
$$

Find the recurrence relation, and determine the first four terms of the solution that begins with $a_{0}=0, a_{1}=1$.
We let $y=\sum_{n=0}^{\infty} a_{n} x^{n}$. The term $4 y^{\prime \prime}$ becomes $\sum_{n=0}^{\infty} 4(n+2)(n+1) a_{n+2} x^{n}$ (after a shift by 2 in the index). The term $-x^{2} y^{\prime \prime}$ becomes $\sum_{n=0}^{\infty}-n(n-1) a_{n} x^{n}$ (no shift necessary). Thus we get

$$
\begin{gather*}
\sum_{n=0}^{\infty}\left[4(n+2)(n+1) a_{n+2}-n(n-1) a_{n}+2 a_{n}\right] x^{n}=0 \tag{17}\\
4(n+2)(n+1) a_{n+2}-n(n-1) a_{n}+2 a_{n}=0 \tag{18}
\end{gather*}
$$

The recursion relation is

$$
\begin{equation*}
a_{n+2}=\frac{n(n-1)-2}{4(n+2)(n+1)} a_{n} \tag{19}
\end{equation*}
$$

Starting with $a_{0}=0, a_{1}=1$, we get $a_{2}=0$, and

$$
\begin{equation*}
a_{3}=\frac{1(1-1)-2}{4(1+2)(1+1)} a_{1}=-\frac{1}{12} \tag{20}
\end{equation*}
$$

So the solution is $y=x-x^{3} / 12+\cdots$.
(d) Find the general solution for $x>0$ of the differential equation:

$$
\begin{equation*}
x^{2} y^{\prime \prime}-x y^{\prime}+y=0 \tag{21}
\end{equation*}
$$

Note: this equation is an Euler equation with a singular point at $x_{0}=0$.
We try a solution of the form $y=x^{r}$. Then we must have

$$
\begin{equation*}
r(r-1) x^{r}-r x^{r}+x^{r}=0 \tag{22}
\end{equation*}
$$

and r must solve

$$
\begin{equation*}
0=r(r-1)-r+1=r^{2}-2 r+1=(r-1)^{2} \tag{23}
\end{equation*}
$$

Since $r=1$ is a double root, the solutions are x^{r} and $x^{r} \ln x$, that is x and $x \ln x$. The general solution is

$$
\begin{equation*}
y=c_{1} x+c_{2} x \ln x \tag{24}
\end{equation*}
$$

3. Laplace transform. (A copy of the table on p. 317 of the textbook will be provided during the exam.)
(a) Write the definition of the Laplace transform of a function $f(t)$.

$$
\begin{equation*}
\mathcal{L}\{f(t)\}=\int_{0}^{\infty} f(t) e^{-s t} d t \tag{25}
\end{equation*}
$$

(b) Here are some functions of s. Find their inverse Laplace transforms. The answer may have discontinuities or delta functions in it.

$$
\begin{equation*}
F(s)=\frac{2 s+1}{s^{2}-2 s+2} \tag{26}
\end{equation*}
$$

We complete the square $s^{2}-2 s+2=(s-1)^{2}+1$. By looking at

$$
\begin{gather*}
\mathcal{L}\left\{e^{t} \sin t\right\}=\frac{1}{(s-1)^{2}+1^{2}} \quad \mathcal{L}\left\{e^{t} \cos t\right\}=\frac{s-1}{(s-1)^{2}+1^{2}} \tag{27}\\
F(s)=2\left(\frac{s-1}{(s-1)^{2}+1^{2}}\right)+3\left(\frac{1}{(s-1)^{2}+1^{2}}\right) \tag{28}
\end{gather*}
$$

We see $f(t)=2 e^{t} \cos t+3 e^{t} \sin t$.

$$
\begin{equation*}
F(s)=\frac{2 e^{-2 s}}{s^{2}-4} \tag{29}
\end{equation*}
$$

The factor of $e^{-2 s}$ gives a step function $u_{2}(t)$, which is multiplied by the inverse transform of $G(s)=\frac{2}{s^{2}-4}$ shifted by 2 . Looking in the table, we see $g(t)=\sinh 2 t$, so

$$
\begin{gather*}
f(t)=u_{2}(t) g(t-2)=u_{2}(t) \sinh 2(t-2) \tag{30}\\
F(s)=\frac{e^{-s}+e^{-2 s}-2 e^{-3 s}}{s} \tag{31}
\end{gather*}
$$

Since $e^{-c s} / s$ is the inverse transform of $u_{c}(t)$, the answer is

$$
\begin{equation*}
g(t)=u_{1}(t)+u_{2}(t)-2 u_{3}(t) \tag{32}
\end{equation*}
$$

(c) Suppose $F(s)$ is the Laplace transform of $f(t)$. What is the inverse transform of $\frac{F(s)}{s^{2}+1}$? This function is $G(s) F(s)$, where $G(s)=\frac{1}{s^{2}+1}$. This corresponds to $g(t)=\sin t$. By the convolution formula,

$$
\begin{equation*}
\mathcal{L}^{-1}\{G(s) F(s)\}=\int_{0}^{t} g(t-\tau) f(\tau) d \tau=\int_{0}^{t} \sin (t-\tau) f(\tau) d \tau \tag{33}
\end{equation*}
$$

(d) For each of following equations, solve for $Y(s)=\mathcal{L}\{y(t)\}$.

$$
\begin{equation*}
y^{\prime \prime}-4 y^{\prime}+4 y=0, \quad y(0)=1, \quad y^{\prime}(0)=1 \tag{34}
\end{equation*}
$$

$y^{\prime \prime}$ becomes $s^{2} Y(s)-s y(0)-y^{\prime}(0)=s^{2} Y(s)-s-1$. y^{\prime} becomes $s Y(s)-y(0)=s Y(s)-1$. So the equation becomes

$$
\begin{gather*}
s^{2} Y(s)-s-1-4(s Y(s)-1)+4 Y(s)=0 \tag{35}\\
\left(s^{2}-4 s+4\right) Y(s)-s+3=0 \tag{36}\\
Y(s)=\frac{s-3}{s^{2}-4 s+4} \tag{37}\\
y^{\prime \prime}-2 y^{\prime}+2 y=e^{-t}, \quad y(0)=0, \quad y^{\prime}(0)=1 \tag{38}
\end{gather*}
$$

$y^{\prime \prime}$ beomes $s^{2} Y(s)-1$. y^{\prime} becomes $s Y(s) . e^{-t}$ beomes $\frac{1}{s+1}$. The equation becomes

$$
\begin{gather*}
s^{2} Y(s)-1-2(s Y(s))+2 Y(s)=\frac{1}{s+1} \tag{39}\\
Y(s)=\frac{1}{s^{2}-2 s+2}\left(1+\frac{1}{s+1}\right) \tag{40}\\
y^{\prime \prime}+4 y=u_{\pi}(t)-u_{3 \pi}(t), \quad y(0)=0, \quad y^{\prime}(0)=0 \tag{41}
\end{gather*}
$$

$y^{\prime \prime}$ becomes $s^{2} Y(s) . u_{\pi}(t)-u_{3 \pi}(t)$ becomes $\left(e^{-\pi s}-e^{-3 \pi s}\right) / s$. The equation beomes

$$
\begin{gather*}
s^{2} Y(s)+4 Y(s)=\left(e^{-\pi s}-e^{-3 \pi s}\right) / s \tag{42}\\
Y(s)=\frac{e^{-\pi s}-e^{-3 \pi s}}{s\left(s^{2}+4\right)} \tag{43}\\
y^{\prime \prime}+2 y^{\prime}+2 y=\delta(t-\pi), \quad y(0)=1, \quad y^{\prime}(0)=0 \tag{44}
\end{gather*}
$$

$y^{\prime \prime}$ becomes $s^{2} Y(s)-s . y^{\prime}$ becomes $s Y(s)-1 . \delta(t-\pi)$ becomes $e^{-\pi s}$. The equation becomes

$$
\begin{gather*}
s^{2} Y(s)-s+2(s Y(s)-1)+2 Y(s)=e^{-\pi s} \tag{45}\\
Y(s)=\frac{s+2+e^{-\pi s}}{s^{2}+2 s+2} \tag{46}
\end{gather*}
$$

4. First order systems.

(a) Write this second order equation as a first order system of equations.

$$
\begin{equation*}
y^{\prime \prime}+2 y^{\prime}+3 y=0 \tag{47}
\end{equation*}
$$

Introduce new variables $x_{1}=y$ and $x_{2}=y^{\prime}$. Then the equation becomes the system

$$
\begin{align*}
& x_{1}^{\prime}=x_{2} \tag{48}\\
& x_{2}^{\prime}=-2 x_{2}-3 x_{1} \tag{49}
\end{align*}
$$

This can also be written

$$
\binom{x_{1}^{\prime}}{x_{2}^{\prime}}=\left(\begin{array}{cc}
0 & 1 \tag{50}\\
-3 & -2
\end{array}\right)\binom{x_{1}}{x_{2}}
$$

(b) In each of these two cases, find the eigenvalues and eigenvectors of the matrix \mathbf{A}, and find the general solution of the system $\mathbf{x}^{\prime}=\mathbf{A x}$

$$
\mathbf{A}=\left(\begin{array}{ll}
3 & -2 \tag{51}\\
2 & -2
\end{array}\right)
$$

The characteristic equation is

$$
0=\operatorname{det}\left(\begin{array}{cc}
3-r & -2 \tag{52}\\
2 & -2-r
\end{array}\right)=(3-r)(-2-r)+4=r^{2}-r-2=(r-2)(r+1)
$$

The eigenvalues are $r_{1}=2$ and $r_{2}=-1$.
For $r_{1}=2$, an eigenvector is $\mathbf{v}_{1}=\binom{2}{1}$. For $r_{2}=-1$, an eigenvector is $\mathbf{v}_{2}=\binom{1}{2}$. The general solution is

$$
\begin{gather*}
\mathbf{x}(t)=c_{1} e^{2 t}\binom{2}{1}+c_{2} e^{-t}\binom{1}{2} \tag{53}\\
\mathbf{A}=\left(\begin{array}{ll}
3 & -2 \\
4 & -1
\end{array}\right) \tag{54}
\end{gather*}
$$

The characteristic equation is

$$
0=\operatorname{det}\left(\begin{array}{cc}
3-r & -2 \tag{55}\\
4 & -1-r
\end{array}\right)=(3-r)(-1-r)+8=r^{2}-2 r+5
$$

The roots are

$$
\begin{equation*}
r=\frac{2 \pm \sqrt{4-20}}{2}=1 \pm 2 i \tag{56}
\end{equation*}
$$

An eigenvector for $r=1 \pm 2 i$ is $\mathbf{v}=\binom{1}{1-i}$. Thus a complex solution is $e^{(1+2 i) t}\binom{1}{1-i}$
Using $e^{(1+2 i) t}=e^{t}(\cos 2 t+i \sin 2 t)$, we get

$$
\begin{equation*}
e^{(1+2 i) t}\binom{1}{1-i}=\binom{e^{t}(\cos 2 t+i \sin 2 t)}{e^{t}(\cos 2 t+i \sin 2 t)(1-i)} \tag{57}
\end{equation*}
$$

The real part is

$$
\begin{equation*}
\mathbf{u}(t)=\binom{e^{t} \cos 2 t}{e^{t}(\cos 2 t+\sin 2 t)} \tag{58}
\end{equation*}
$$

The imaginary part is

$$
\begin{equation*}
\mathbf{v}(t)=\binom{e^{t} \sin 2 t}{e^{t}(\sin 2 t-\cos 2 t)} \tag{59}
\end{equation*}
$$

The general solution is $\mathbf{x}(t)=c_{1} \mathbf{u}(t)+c_{2} \mathbf{v}(t)$.

