name Solutions
EID:

M 427K Exam 1 Version B October 9, 2012 Instructor: James Pascaleff

INSTRUCTIONS:

- Do all work on these sheets.
- Show all work.
- No books, notes, calculators, or other electronic devices.

Problem	Possible	Actual
1	16	
2	20	
3	12	
4	16	
5	16	
6	12	
7	8	
Total	100	

1. Autonomous Equations. (16 points) Consider the first order autonomous equation

$$
\frac{d y}{d t}=(y-1)(y-2)(y-3)
$$

(a) (4 points) Find the critical points of the equation.

$$
y=1, \quad y=2, \quad y=3
$$

(b) (4 points) Draw a plot of $f(y)=(y-1)(y-2)(y-3)$, and use it to determine where solutions are increasing or decreasing.

$$
\begin{aligned}
& y<1 \text { decreasing } \\
& 1<y<2 \text { increasing } \\
& 2<y<3 \text { decreasing } \\
& 3<y \quad \text { increasing }
\end{aligned}
$$

(c) (4 points) Determine whether each equilibrium is stable, unstable, or semistable.

$$
\begin{array}{ll}
y=1 & \text { unstable } \\
y=2 & \text { stable } \\
y=3 & \text { unstable }
\end{array}
$$

(d) (4 points) Make a plot of the solutions to the equation.

2. First Order Solution Techniques. (20 points) For parts (a) and (b), Find the general solution to the equation, either by finding a formula for y, or by finding an implicit equation for y.
(a) $\left(8\right.$ points) $\frac{d y}{d x}=y x /\left(1+y^{2}\right)$
$\frac{1+y^{2}}{y} \frac{d y}{d x}=x$

$$
\int\left(\frac{1}{y}+y\right) d y=\int x d x
$$

$$
\ln |y|+\frac{1}{2} y^{2}=\frac{1}{2} x^{2}+c \text { implicit equation }
$$

(b) (8 points) $y^{\prime}+(2 / t) y=t^{2}+t^{-2}($ for $t>0)$

$$
\begin{aligned}
& y=e^{\int 2 / d t}=e^{2 \ln t}=t^{2} \\
& t^{2} y^{\prime}+2 t y=t^{4} t 1 \\
& \left(t^{2} y\right)^{\prime}=t^{4}+1 \\
& t^{2} y=\int\left(t^{4}+1\right) d\left(=\frac{1}{5} t^{5}+t+c\right.
\end{aligned} \quad \rightarrow y=\frac{1}{5} t^{3}+\frac{1}{t}+\frac{c}{t^{2}}
$$

(c) (4 points) Is the equation $(2 x+4 x y)+\left(2 x^{2}\right) \frac{d y}{d x}=0$ exact? Explain how you know, but do not solve it.

$$
M y=4 x
$$

$$
N_{x}=4 x \text { equal, so it is exact! }
$$

3. Complex Exponentials. (12 points)
(a) (6 points) Use Euler's formula to write $e^{5+\pi i}+e^{(\pi / 2) i}$ in the form $a+b i$ where a and b

$$
\begin{aligned}
e^{5+\pi i} & =e^{5} e^{\pi i}=e^{5}(\cos \pi+i \sin \pi)=e^{5}(-1+0 i) \\
& =-e^{5} \\
e^{(\pi / 2)} & =\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}=0+i \cdot 1=i \\
\text { Total } & =-e^{5}+i
\end{aligned}
$$

(b) (6 points) Find nonzero constants c_{1} and c_{2} so that $c_{1} e^{4 i t}+c_{2} e^{-4 i t}$ is real for all t. There are many correct answers.

$$
\begin{aligned}
c_{1}=c_{2} & =1 \\
e^{4 i t}+e^{-4 i t} & =\cos 4 t+i \sin 4 t+\cos (-4 t)+i \sin (-4 t) \\
& =\cos 4 t+i \sin 4 t+\cos (4 t)-i \sin (4 t) \\
& =2 \cos 4 t
\end{aligned}
$$

which is real.
4. Homogeneous Second Order Linear Equations. (16 points) For each of the following equations, find a pair of solutions that form a fundamental set. You do not need to derive your answer from first principles. If it happens the roots are complex, you should find a pair of real solutions (half credit for complex solutions only).

$$
\begin{aligned}
& \text { (a) (4 points) } y^{\prime \prime}-3 y^{\prime}+7 y=0 \\
& r=\frac{3 \pm \sqrt{9-28}}{2}=\frac{3 \pm \sqrt{19}}{2} \text {; } \\
& y_{1}=e^{\frac{3}{2} t} \cos \left(\frac{\sqrt{19}}{2} t\right) \quad y_{2}=e^{3 / 2 t} \sin \left(\frac{\sqrt{19}}{2} t\right) \\
& \text { (b) (4 points) } y^{\prime \prime}+8 y^{\prime}+16 y=0 \\
& r=\frac{-8 \pm \sqrt{64-4 \cdot 6}}{2}=\frac{-8}{2}=-4 \\
& y_{1}=e^{-4 t} \quad y_{2}=t e^{-4 t} \\
& \text { (c) (4 points) } y^{\prime \prime}-4 y^{\prime}+3 y=0 \\
& r=\frac{4 \pm \sqrt{16-4 \cdot 3}}{2}=\frac{4 \pm 2}{2}=2 \pm 1=1 \text { or } 3 \\
& y_{1}=e^{t} \quad y_{2}=e^{3 t}
\end{aligned}
$$

(d) (4 points) Find the Wronskian of your solutions to part (c).

$$
\begin{aligned}
y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime} & =e^{t}\left(3 e^{3 t}\right)-e^{3 t} e^{t} \\
& =3 e^{4 t}-e^{4 t}=2 e^{4 t}
\end{aligned}
$$

$y^{\prime \prime}+y^{\prime}-2 y=10 \cos (t), \quad y(0)=-3, \quad y^{\prime}(0)=1$
You may use any methods, but you must show your work.

$$
y=A \cos t+B \sin t \mid y^{\prime \prime}+y^{\prime}-2 y
$$

$$
\begin{aligned}
& y^{\prime}=-A \sin t+B \cos t \\
& y^{\prime \prime}=-A \cos t-B \sin t
\end{aligned}
$$

$$
=-A \cos t-B \sin t
$$

$$
+B \cos t-A \sin t
$$

so reed $\sqrt{ }$

$$
\begin{array}{ll}
-3 A+B=10 \\
-3 B-A=0 \\
A=-3 B \\
-3(-3 B)+B=10 \\
& 10 B=10 \Rightarrow B=1
\end{array} \Rightarrow A=-3 \text { so } Y=-3 \cos t+\sin t
$$

roots $r=-\frac{1 \pm \sqrt{1+8}}{2}=\frac{-1 \pm 3}{2}=-2$ and 1

$$
\begin{aligned}
& y=c_{1} e^{t}+c_{2} e^{-2 t}-3 \cos t+\sin t \quad y(0)=c_{1}+c_{2}-3 \\
& y^{\prime}=c_{1} e^{t}-2 c_{2} e^{-2 t}+3 \sin t+\cos t \quad y^{\prime}(0)=c_{1}-2 c_{2}+1 \\
& c_{1}+c_{2}-3=-3 \Rightarrow c_{1}+c_{2}=0 \\
& c_{1}-2 c_{2}+1=1 \Rightarrow c_{1}=c_{2}=0 \\
& c_{1}-2 c_{2}=0
\end{aligned}
$$

so $y=-3 \cos t+\sin t$
6. Theory of Linear Equations. (12 points) Consider the second order linear differential operator

$$
L[y]=y^{\prime \prime}+\sin (t) y^{\prime}+e^{2 t} y
$$

Suppose we want to solve the nonhomogeneous equation

$$
L[y]=4 \frac{\sin (t)}{t}+3 \ln (t)
$$

This is very difficult to do from scratch, but suppose that a very smart colleague finds for us functions Y_{1} and Y_{2} solving the equations

$$
L\left[Y_{1}\right]=\frac{\sin (t)}{t}, \quad L\left[Y_{2}\right]=2 \ln (t)
$$

How can we use Y_{1} and Y_{2} to get a solution to the original equation?

$$
\dot{y}=4 y_{1}+\frac{3}{2} y_{2}
$$

$$
L[Y]=L\left[4 y_{1}+\frac{3}{2} Y_{2}\right]
$$

$$
=4 L\left[y_{1}\right]+\frac{3}{2} L\left[y_{2}\right]
$$

$$
=4 \frac{\sin (t)}{t}+3 \ln (t)
$$

7. Vibrations. (8 points) Suppose that a damped mass-on-a-spring is described by the equation

$$
5 u^{\prime \prime}+\gamma u^{\prime}+10 u=0
$$

When γ is small, the solutions oscillate, while when γ is large they do not. Find the value of γ where the cross-over between these two behaviors occurs. In other words, find the value of γ for which the system is critically damped.

$$
\text { Discriminant }=0
$$

$0=\gamma^{2}-4 k m=\gamma^{2}-4 \cdot 10 \cdot 5=r^{2}-200$

$$
\gamma^{2}=200
$$

$$
\gamma=\sqrt{200}
$$

