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Exercises:

Evaluate the following limits
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Solution: This limit is of the indeterminate forma, hence we apply I'Hospital’s rule

after which we can simply plug in
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Solution: Similarly, we can apply I'Hospital’s rule and then plug in
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Solution: This limit is of the indeterminate form % and in this case we may apply

I"Hospital’s rule 3 times until the denominator becomes a constant, at which point
we may evaluate by plugging in
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Solution: I'Hospital’s rule is applicable once, then plugging in gives us our answer
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Solution: This limit is of the formoo — oo, so we can manipulate the function until
it is of an indeterminate form to which I’"Hospital’s rule is applicable by finding a
common denominator
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So now we can apply I'Hospital’s rule twice and then plugging gives us the limit
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55. lim,_,(1 — 2x) /x

Solution: This limit is indeterminate of the form1®. Noticing thaty = e, we

. 1 i 1 -
thus know that lim,_,o(1 — 2x)/x = elimx-0In(1-2x) P = glimamoyIn(1-22)
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And so we consider the limit on the exponent, which is of the form 5 and hence

we apply I’'Hospital’s rule once and then plug in
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Hence,
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87.LetS(x) = fox sin (% ntz) dt, and evaluate the following limit:

Solution: Asx — 0, we have thatS(x) — 0, hence this limit is of indeterminate

form % and we may apply I'Hospital’s rule 3 times, at which point we may plug in

Before doing so we notice that by the fundamental theorem of calculus:

(S(x))' = sin (%mﬂ)

And so
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