M408D

Discussion Session Aug 25, 2011

Pg 478

Exercises:

Evaluate the following limits

8. $\lim _{x \rightarrow 1} \frac{x^{a}-1}{x^{b}-1}$

Solution: This limit is of the indeterminate form $\frac{0}{0^{\prime}}$, hence we apply l'Hospital's rule after which we can simply plug in

$$
\lim _{x \rightarrow 1} \frac{x^{a}-1}{x^{b}-1}=\lim _{x \rightarrow 1} \frac{a x^{a-1}}{b x^{b-1}}=\frac{a}{b}
$$

13. $\lim _{x \rightarrow 0} \frac{\tan (\mathbf{p x})}{\tan (\mathbf{q x})}$

Solution: Similarly, we can apply l'Hospital's rule and then plug in

$$
\lim _{x \rightarrow 0} \frac{\tan (\mathrm{px})}{\tan (\mathrm{qx})}=\lim _{x \rightarrow 0} \frac{p \sec ^{2}(p x)}{q \sec ^{2}(q x)}=\frac{p}{q}
$$

22. $\lim _{x \rightarrow 0} \frac{e^{x}-1-x-\frac{1}{2} x^{2}}{x^{3}}$

Solution: This limit is of the indeterminate form $\frac{0}{0}$ and in this case we may apply l'Hospital's rule 3 times until the denominator becomes a constant, at which point we may evaluate by plugging in

$$
\lim _{x \rightarrow 0} \frac{e^{x}-1-x-\frac{1}{2} x^{2}}{x^{3}}=\lim _{x \rightarrow 0} \frac{e^{x}-1-x}{3 x^{2}}=\lim _{x \rightarrow 0} \frac{e^{x}-1}{6 x}=\lim _{x \rightarrow 0} \frac{e^{x}}{6}=\frac{1}{6}
$$

25. $\lim _{t \rightarrow 0} \frac{5^{t}-3^{t}}{t}$

Solution: l'Hospital's rule is applicable once, then plugging in gives us our answer

$$
\lim _{t \rightarrow 0} \frac{5^{t}-3^{t}}{t}=\lim _{t \rightarrow 0} \ln 5 \cdot 5^{t}-\ln 3 \cdot 3^{t}=\ln 5-\ln 3=\ln \frac{5}{3}
$$

47. $\lim _{x \rightarrow 1}\left(\frac{x}{x-1}-\frac{1}{\ln x}\right)$

Solution: This limit is of the form $\infty-\infty$, so we can manipulate the function until it is of an indeterminate form to which l'Hospital's rule is applicable by finding a common denominator

$$
\frac{x}{x-1}-\frac{1}{\ln x}=\frac{x \ln x}{(x-1) \ln x}-\frac{(x-1)}{(x-1) \ln x}=\frac{x \ln x-x+1}{(x-1) \ln x}=\frac{x \ln x-x+1}{x \ln x-\ln x}
$$

So now we can apply l'Hospital's rule twice and then plugging gives us the limit

$$
\begin{array}{r}
\lim _{x \rightarrow 1}\left(\frac{x}{x-1}-\frac{1}{\ln x}\right)=\lim _{x \rightarrow 1}\left(\frac{x \ln x-x+1}{x \ln x-\ln x}\right)=\lim _{x \rightarrow 1}\left(\frac{\ln x+1-1}{\ln x+1-\frac{1}{x}}\right) \\
=\lim _{x \rightarrow 1}\left(\frac{\ln x}{\ln x+1-\frac{1}{x}}\right)=\lim _{x \rightarrow 1}\left(\frac{\frac{1}{x}}{\frac{1}{x}+\frac{1}{x^{2}}}\right)=\frac{1}{1+1}=\frac{1}{2}
\end{array}
$$

55. $\lim _{x \rightarrow 0}(1-2 x)^{1 / x}$

Solution: This limit is indeterminate of the form 1^{∞}. Noticing that $y=e^{\ln y}$, we thus know that $\lim _{x \rightarrow 0}(1-2 x)^{1 / x}=e^{\lim _{x \rightarrow 0} \ln (1-2 x)^{1 / x}}=e^{\lim _{x \rightarrow 0} \frac{1}{x} \ln (1-2 x)}$

And so we consider the limit on the exponent, which is of the form $\frac{0}{0}$ and hence we apply l'Hospital's rule once and then plug in

$$
\lim _{x \rightarrow 0} \frac{\ln (1-2 x)}{x}=\lim _{x \rightarrow 0} \frac{\left(\frac{-2}{1-2 x}\right)}{1}=-2
$$

Hence,

$$
\lim _{x \rightarrow 0}(1-2 x)^{1 / x}=e^{\lim _{x \rightarrow 0} \ln (1-2 x)^{1 / x}}=e^{-2}
$$

87. Let $S(x)=\int_{0}^{x} \sin \left(\frac{1}{2} \pi t^{2}\right) d t$, and evaluate the following limit:

$$
\lim _{x \rightarrow 0} \frac{S(x)}{x^{3}}
$$

Solution: As $x \rightarrow 0$, we have that $S(x) \rightarrow 0$, hence this limit is of indeterminate form $\frac{0}{0}$ and we may apply l'Hospital's rule 3 times, at which point we may plug in Before doing so we notice that by the fundamental theorem of calculus:

$$
(S(x))^{\prime}=\sin \left(\frac{1}{2} \pi x^{2}\right)
$$

And so

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{S(x)}{x^{3}}= & \lim _{x \rightarrow 0} \frac{\sin \left(\frac{1}{2} \pi x^{2}\right)}{3 x^{2}}=\lim _{x \rightarrow 0} \frac{\cos \left(\frac{1}{2} \pi x^{2}\right) \pi x}{6 x} \\
& =\lim _{x \rightarrow 0} \frac{-\sin \left(\frac{1}{2} \pi x^{2}\right) \pi^{2} x^{2}+\cos \left(\frac{1}{2} \pi x^{2}\right) \pi}{6}=\frac{\pi}{6}
\end{aligned}
$$

